如圖,直角坐標(biāo)系中,一直角三角形,,B、D在軸上且關(guān)于原點對稱,在邊上,BD=3DC,△ABC的周長為12.若一雙曲線以B、C為焦點,且經(jīng)過A、D兩點.

⑴ 求雙曲線的方程;

⑵ 若一過點為非零常數(shù))的直線與雙曲線相交于不同于雙曲線頂點的兩點、,且,問在軸上是否存在定點,使?若存在,求出所有這樣定點的坐標(biāo);若不存在,請說明理由

 

【答案】

(1)  (2)在軸上存在定點,使

【解析】

試題分析:(1) 設(shè)雙曲線的方程為,則

,得,即

      3分

解之得,∴

∴雙曲線的方程為. 5分

(2) 設(shè)在軸上存在定點,使

設(shè)直線的方程為,

,得

         ①  6分

,,

. ②  8分

把①代入②,得  ③  9分

代入并整理得

其中,即

.   10分

代入③,得,化簡得 .當(dāng)時,上式恒成立.

因此,在軸上存在定點,使.  13分

考點:本題主要考查雙曲線的方程,直線與雙曲線的位置關(guān)系,平面向量的坐標(biāo)運(yùn)算。

點評:難題,曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題(1)求雙曲線方程時,應(yīng)用了雙曲線的定義及其幾何性質(zhì),難度不大,較為典型。(2)則在應(yīng)用韋達(dá)定理的基礎(chǔ)上,通過平面向量的坐標(biāo)運(yùn)算,達(dá)到證明目的。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),當(dāng)0≤x≤2時,y=x,當(dāng)x>2時,y=f(x)的圖象是頂點為P(3,4),且過點A(2,2)的拋物線的一部分.
(1)求函數(shù)f(x)在(-∞,-2)上的解析式;
(2)在如圖的直角坐標(biāo)系中直接畫出函數(shù)f(x)的草圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在直角坐標(biāo)系中,點A(5,2),B(2,m)AD⊥OB,垂足為D,
(1)若m=6時,求直線AD的方程;
(2)若△AOB的面積為8,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某小學(xué)五年級一次考試中,五名同學(xué)的語文、英語成績?nèi)绫硭荆?br />
學(xué)生 A1 A2 A3 A4 A5
語文(x分) 89 91 93 95 97
英語(y分) 87 89 89 92 93
(1)請在如圖的直角坐標(biāo)系中作出這些數(shù)據(jù)的散點圖,并求出這些數(shù)據(jù)的回歸方程;
(2)要從4名語文成績在90分以上的同學(xué)中選2人參加一項活動,以X表示選中的同學(xué)的英語成績高于90分的人數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直角坐標(biāo)系中,B在x軸上、C在y軸上,且|BC|=a (a>0),若長為2a的線段PQ以原點O為中點,問
PQ
BC
的夾角θ取何值時,
BP
CQ
的值最大?并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳一模)一次考試中,五名同學(xué)的數(shù)學(xué)、物理成績?nèi)缦卤硭荆?br />
學(xué)生 A1 A2 A3 A4 A5
數(shù)學(xué)(x分) 89 91 93 95 97
物理(y分) 87 89 89 92 93
(1)請在如圖的直角坐標(biāo)系中作出這些數(shù)據(jù)的散點圖,并求出這些數(shù)據(jù)的回歸方程;
(2)要從4名數(shù)學(xué)成績在90分以上的同學(xué)中選2人參加一項活動,以X表示選中的同學(xué)的物理成績高于90分的人數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X)的值.

查看答案和解析>>

同步練習(xí)冊答案