【題目】已知函數(shù)f(x)=
(1)判斷并用定義證明函數(shù)的奇偶性;
(2)判斷并用定義證明函數(shù)在(﹣∞,0)上的單調(diào)性.

【答案】
(1)解:f(x)的定義域?yàn)椋ī仭蓿?)∪(0,+∞),它關(guān)于原點(diǎn)對稱,

,

∴f(x)為偶函數(shù)


(2)解:任取x1,x2∈(﹣∞,0),且x1<x2

= ,

∵x1<x2<0,∴x1+x2<0,x2﹣x1>0,

∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),

∴f(x)在(﹣∞,0)上為增函數(shù)


【解析】(1)直接利用函數(shù)的奇偶性定義求證即可;(2)直接利用函數(shù)單調(diào)性的定義求證即可;
【考點(diǎn)精析】利用奇偶性與單調(diào)性的綜合對題目進(jìn)行判斷即可得到答案,需要熟知奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相反的單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中, ,前項和滿足).

⑴ 求數(shù)列的通項公式;

,求數(shù)列的前項和;

⑶ 是否存在整數(shù)對(其中 )滿足?若存在,求出所有的滿足題意的整數(shù)對;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)y=sin(x﹣ )的圖象向左平移 個單位長度,再將圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的 倍(縱坐標(biāo)不變)得到函數(shù)f(x)的圖象. (Ⅰ)寫出函數(shù)f(x)的解析式;
(Ⅱ)若x∈[0, ]時,關(guān)于x的方程f(x)﹣m=0有兩個不等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海關(guān)對同時從AB、C三個不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測,從各地區(qū)進(jìn)口此種商品的數(shù)量(單位:件)如下表所示,工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進(jìn)行檢測.

地區(qū)

A

B

C

數(shù)量

50

150

100

(1)求這6件樣品中來自AB、C各地區(qū)商品的數(shù)量;

(2)若在這6件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)一步檢測,求這2件商品來自相同地區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求處的切線方程;

(2)若在區(qū)間上恰有兩個零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6},則A∪(UB)=(
A.{2,5}
B.{2,5,7,8}
C.{2,3,5,6,7,8}
D.{1,2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 分別是橢圓 )的左、右焦點(diǎn),離心率為 , 分別是橢圓的上、下頂點(diǎn),

(1)求橢圓的方程;

(2)過作直線交于, 兩點(diǎn),求三角形面積的最大值(是坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)對任意的實(shí)數(shù)滿足: ,且當(dāng)﹣3≤x<﹣1時,f(x)=﹣(x+2)2 , 當(dāng)﹣1≤x<3時,f(x)=x,則f(1)+f(2)+f(3)+…+f(2015)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中.

(1)求證:AC⊥平面B1BDD1;
(2)求三棱錐B﹣ACB1體積.

查看答案和解析>>

同步練習(xí)冊答案