【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=2,nan+1=2(n+1)an
(1)記bn= ,求數(shù)列{bn}的通項(xiàng)bn;
(2)求通項(xiàng)an及前n項(xiàng)和Sn .
【答案】
(1)解:因?yàn)閚an+1=2(n+1)an
所以 ,即bn+1=2bn
所以{bn}是以b1=2為首項(xiàng),公比q=2的等比數(shù)列.
所以數(shù)列{bn}的通項(xiàng)bn=2×2n﹣1=2n
(2)解:由(1)得an=nbn=n2n.
所以 sn=12+222+323+…+(n﹣1)2n﹣1+n2n.;
2 sn=122+223+324+…+(n﹣1)2n+n2n+1.;
所以﹣sn=2+22+23+24+…+2n﹣n2n+1= .
所以sn=(n﹣1)2n+1+2
【解析】(1)由nan+1=2(n+1)an ,即bn+1=2bn . (2)由(1)得an=nbn=n2n . 錯(cuò)位相減法求和即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖<1>:在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=6,CE⊥AD于E點(diǎn),把△DEC沿CE折到D′EC的位置,使D′A=2 ,如圖<2>:若G,H分別為D′B,D′E的中點(diǎn).
(1)求證:GH⊥平面AD′C;
(2)求平面D′AB與平面D′CE的夾角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=1﹣ ,其中n∈N* .
(Ⅰ)設(shè)bn= ,求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)Cn= ,數(shù)列{CnCn+2}的前n項(xiàng)和為Tn , 是否存在正整數(shù)m,使得Tn< 對于n∈N*恒成立,若存在,求出m的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)= ,F(xiàn)(x)=2f(x)﹣x有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個(gè)數(shù)是( ) ①命題“x∈R,x3﹣x2+1≤0”的否定是“ ;
②“ ”是“三個(gè)數(shù)a,b,c成等比數(shù)列”的充要條件;
③“m=﹣1”是“直線mx+(2m﹣1)y+1=0和直線3x+my+2=0垂直”的充要條件:
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱柱ABC﹣A1B1C1中,△ABC為等邊三角形,AA1⊥平面ABC,AA1=AB,M,N分別是A1B1 , A1C1的中點(diǎn),則BM與AN所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知M是直線l:x=﹣1上的動點(diǎn),點(diǎn)F的坐標(biāo)是(1,0),過M的直線l′與l垂直,并且l′與線段MF的垂直平分線相交于點(diǎn)N (Ⅰ)求點(diǎn)N的軌跡C的方程
(Ⅱ)設(shè)曲線C上的動點(diǎn)A關(guān)于x軸的對稱點(diǎn)為A′,點(diǎn)P的坐標(biāo)為(2,0),直線AP與曲線C的另一個(gè)交點(diǎn)為B(B與A′不重合),直線P′H⊥A′B,垂足為H,是否存在一個(gè)定點(diǎn)Q,使得|QH|為定值?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年微信用戶數(shù)量統(tǒng)計(jì)顯示,微信注冊用戶數(shù)量已經(jīng)突破9.27億.微信用戶平均年齡只有26歲,97.7%的用戶在50歲以下,86.2%的用戶在18﹣36歲之間.為調(diào)查大學(xué)生這個(gè)微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從北京市大學(xué)生中隨機(jī)抽取100位同學(xué)進(jìn)行了抽樣調(diào)查,結(jié)果如下:
微信群數(shù)量 | 頻數(shù) | 頻率 |
0至5個(gè) | 0 | 0 |
6至10個(gè) | 30 | 0.3 |
11至15個(gè) | 30 | 0.3 |
16至20個(gè) | a | c |
20個(gè)以上 | 5 | b |
合計(jì) | 100 | 1 |
(Ⅰ)求a,b,c的值;
(Ⅱ)若從這100位同學(xué)中隨機(jī)抽取2人,求這2人中恰有1人微信群個(gè)數(shù)超過15個(gè)的概率;
(Ⅲ)以這100個(gè)人的樣本數(shù)據(jù)估計(jì)北京市的總體數(shù)據(jù)且以頻率估計(jì)概率,若從全市大學(xué)生中隨機(jī)抽取3人,記X表示抽到的是微信群個(gè)數(shù)超過15個(gè)的人數(shù),求X的分布列和數(shù)學(xué)期望EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},{bn}滿足bn=an+1﹣an(n=1,2,3,…).
(1)若bn=10﹣n,求a16﹣a5的值;
(2)若 且a1=1,則數(shù)列{a2n+1}中第幾項(xiàng)最小?請說明理由;
(3)若cn=an+2an+1(n=1,2,3,…),求證:“數(shù)列{an}為等差數(shù)列”的充分必要條件是“數(shù)列{cn}為等差數(shù)列且bn≤bn+1(n=1,2,3,…)”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com