設e是橢圓
x2
4
+
y2
k
=1
的離心率,且e∈(
1
2
, 1)
,則實數(shù)k的取值范圍是( 。
A、(0,3)
B、(3,
16
3
C、(0,3)∪( 
16
3
,+∞)
D、(0,2)
考點:橢圓的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:對k分類討論,確定焦點的位置,求橢圓的離心率,從而可求實數(shù)k的取值范圍.
解答: 解:由于橢圓
x2
4
+
y2
k
=1
,
①若4>k>0,a2=4,b2=k,c2=4-k,
∴e2=
c2
a2
=
4-k
4
1
4
,∴k<3,
則有0<k<3;
②若k>4,則a2=k,b2=4,c2=k-4,
∴e2=
c2
a2
=
k-4
k
1
4
,∴k
16
3

則有實數(shù)k的取值范圍是(0,3)∪(
16
3
,+∞).
故選C.
點評:本題考查橢圓的標準方程與幾何性質,考查分類討論的數(shù)學思想,考查計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

計算:
sin70°+sin50°
sin80°
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=ex(x2+ax+1).
(1)討論f(x)的單調性;
(2)如若x=1時,f(x)有極值,證明:當θ∈[0,
π
2
]時,f(cosθ)-f(sinθ)≤e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線C:mx2-y2=1(m為常數(shù))的一條漸近線與直線l:y=-3x-1垂直,則雙曲線C的焦距為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當0≤x≤2π時,則不等式:sinx-cosx≥0的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知下列命題:
①命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x”;
②已知p、q為兩個命題,若“p∨q”為假命題,則“¬p∧¬q為真命題”;
③“a>2”是“a>5”的充分不必要條件;
④“若xy=0,則x=0且y=0”的逆否命題為真命題.
其中所有真命題的序號是(  )
A、①②③B、②④C、②D、④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是橢圓
x2
12
+
y2
4
=1上不同于左頂點A、右頂點B的任意一點,記直線PA,PB的斜率分別為k1,k2,則k1•k2的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,an+1=|an-4|+2(n∈N+).
(1)若a1=1,求數(shù)列前n項和Sn
(2)是否存在a1(a1≠3),使數(shù)列{an}成等差數(shù)列?若存在,求出a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設變量x,y滿足約束條件
x≤2
y≤x
x+y≥2
,則目標函數(shù)z=2x+y的最小值為
 

查看答案和解析>>

同步練習冊答案