【題目】已知,直線不過原點且不平行于坐標(biāo)軸,有兩個交點,,線段的中點為

1)若,點在橢圓上,、分別為橢圓的兩個焦點,求的范圍;

2)若過點,射線與橢圓交于點,四邊形能否為平行四邊形?若能,求此時直線斜率;若不能,說明理由.

【答案】1;(2.

【解析】

1)求得焦點坐標(biāo),設(shè),運用向量數(shù)量積的坐標(biāo)表示,結(jié)合橢圓的范圍,可得所求范圍;

2)設(shè),的坐標(biāo)分別為,,,運用中點坐標(biāo)公式和點差法,直線的斜率公式,結(jié)合平行四邊形的性質(zhì),即可得到所求斜率.

解:(1時,橢圓,兩個焦點,,,,

設(shè),可得,即

,,,

因為,

所以的范圍是;

2)設(shè),的坐標(biāo)分別為,,,可得,,

,兩式相減可得,

,即,

,又設(shè),直線,

即直線的方程為

從而,代入橢圓方程可得,,

,聯(lián)立得,

若四邊形為平行四邊形,那么也是的中點,

所以,即,整理可得,

解得,經(jīng)檢驗滿足題意,

所以當(dāng)時,四邊形為平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】法國數(shù)學(xué)家龐加是個喜歡吃面包的人,他每天都會購買一個面包,面包師聲稱自己出售的每個面包的平均質(zhì)量是1000,上下浮動不超過50.這句話用數(shù)學(xué)語言來表達就是:每個面包的質(zhì)量服從期望為1000,標(biāo)準(zhǔn)差為50的正態(tài)分布.

1)假設(shè)面包師的說法是真實的,從面包師出售的面包中任取兩個,記取出的兩個面包中質(zhì)量大于1000的個數(shù)為,求的分布列和數(shù)學(xué)期望;

2)作為一個善于思考的數(shù)學(xué)家,龐加萊每天都會將買來的面包稱重并記錄,25天后,得到數(shù)據(jù)如下表,經(jīng)計算25個面包總質(zhì)量為24468.龐加萊購買的25個面包質(zhì)量的統(tǒng)計數(shù)據(jù)(單位:

981

972

966

992

1010

1008

954

952

969

978

989

1001

1006

957

952

969

981

984

952

959

987

1006

1000

977

966

盡管上述數(shù)據(jù)都落在上,但龐加菜還是認為面包師撒謊,根據(jù)所附信息,從概率角度說明理由

附:

,從X的取值中隨機抽取25個數(shù)據(jù),記這25個數(shù)據(jù)的平均值為Y,則由統(tǒng)計學(xué)知識可知:隨機變量

,則,;

通常把發(fā)生概率在0.05以下的事件稱為小概率事件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年上半年,隨著新冠肺炎疫情在全球蔓延,全球超過個國家或地區(qū)宣布進人緊急狀態(tài),部分國家或地區(qū)直接宣布封國封城,隨著國外部分活動進入停擺,全球經(jīng)濟缺乏活力,一些企業(yè)開始倒閉,下表為年第一季度企業(yè)成立年限與倒閉分布情況統(tǒng)計表:

企業(yè)成立年份

2019

2018

2017

2016

2015

企業(yè)成立年限

1

2

3

4

5

倒閉企業(yè)數(shù)量(萬家)

5.23

4.70

3.72

3.12

2.42

倒閉企業(yè)所占比例

21.8%

19.6%

15.5%

13.0%

10.1%

根據(jù)上表,給出兩種回歸模型:

模型①:建立曲線型回歸模型,求得回歸方程為;

模型②:建立線性回歸模型.

1)根據(jù)所給的統(tǒng)計量,求模型②中關(guān)于的回歸方程;

2)根據(jù)下列表格中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測年成立的企業(yè)中倒閉企業(yè)所占比例(結(jié)果保留整數(shù)).

回歸模型

模型①

模型②

回歸方程

參考公式:,;.

參考數(shù)據(jù):,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別是,直線與橢圓交于兩點.

1)若為橢圓短軸上的一個頂點,且是直角三角形,求的值;

2)若,且,求證:的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和的直角坐標(biāo)方程;

2)已知曲線的極坐標(biāo)方程為,點是曲線的交點,點是曲線的交點,均異于原點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】BMI指數(shù)(身體質(zhì)量指數(shù),英文為BodyMassIndex,簡稱BMI)是衡量人體胖瘦程度的一個標(biāo)準(zhǔn),BMI=體重(kg/身高(m)的平方.根據(jù)中國肥胖問題工作組標(biāo)準(zhǔn),當(dāng)BMI28時為肥胖.某地區(qū)隨機調(diào)查了120035歲以上成人的身體健康狀況,其中有200名高血壓患者,被調(diào)查者的頻率分布直方圖如下:

1)求被調(diào)查者中肥胖人群的BMI平均值;

2)填寫下面列聯(lián)表,并判斷是否有99.9%的把握認為35歲以上成人患高血壓與肥胖有關(guān).

0.050

0.010

0.001

k

3.841

6.635

10.828

肥胖

不肥胖

合計

高血壓

非高血壓

合計

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,斜率為的直線交拋物線兩點,當(dāng)直線過點時,以為直徑的圓與直線相切.

(1)求拋物線的方程;

(2)與平行的直線交拋物線于,兩點,若平行線,之間的距離為,且的面積是面積的O為坐標(biāo)原點),求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B分別為橢圓Ea>1)的左、右頂點,GE的上頂點,P為直線x=6上的動點,PAE的另一交點為C,PBE的另一交點為D

1)求E的方程;

2)證明:直線CD過定點.

查看答案和解析>>

同步練習(xí)冊答案