已知橢圓的左,右兩個(gè)頂點(diǎn)分別為、.曲線是以、兩點(diǎn)為頂點(diǎn),離心率為的雙曲線.設(shè)點(diǎn)在第一象限且在曲線上,直線與橢圓相交于另一點(diǎn)
(1)求曲線的方程;
(2)設(shè)兩點(diǎn)的橫坐標(biāo)分別為,,證明:.

(1);(2)詳見解析.

解析試題分析:(1)由橢圓的左右頂點(diǎn)分別為可得,,又由雙曲線為頂點(diǎn),故可設(shè)雙曲線的方程為,再由條件中雙曲線離心率為,可建立關(guān)于的方程,從而得到雙曲線的方程為;(2)根據(jù)題意可設(shè)直線的方程為,將直線方程與橢圓方程聯(lián)立求,,消去后可得:,解得,因此,同理,將直線方程與雙曲線方程聯(lián)立,消去后可得
,從而得證.  .
試題解析:(1)依題意可得,,∴設(shè)雙曲線的方程為,
又∵雙曲線的離心率為,∴,即,∴雙曲線的方程為;
(2)設(shè)點(diǎn),,),設(shè)直線的方程為,
聯(lián)立方程組,整理得:,
, 同理可得,聯(lián)立方程組,∴.    .  
考點(diǎn):1.雙曲線的標(biāo)準(zhǔn)方程;2.直線與圓錐曲線相交綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓G:經(jīng)過橢圓的右焦點(diǎn)F及上頂點(diǎn)B,過橢圓外一點(diǎn)(m,0)()傾斜角為的直線L交橢圓與C、D兩點(diǎn).
(1)求橢圓的方程;
(2)若右焦點(diǎn)F在以線段CD為直徑的圓E的內(nèi)部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是,,并且經(jīng)過點(diǎn),求它的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知拋物線,在此拋物線上一點(diǎn)到焦點(diǎn)的距離是3.
(1)求此拋物線的方程;
(2)拋物線的準(zhǔn)線與軸交于點(diǎn),過點(diǎn)斜率為的直線與拋物線交于、兩點(diǎn).是否存在這樣的,使得拋物線上總存在點(diǎn)滿足,若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的對(duì)稱中心在坐標(biāo)原點(diǎn),一個(gè)頂點(diǎn)為,右焦點(diǎn)F與點(diǎn) 的距離為2。
(1)求橢圓的方程;
(2)斜率的直線與橢圓相交于不同的兩點(diǎn)M,N滿足,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)橢圓的左右焦點(diǎn)為,上頂點(diǎn)為,點(diǎn)關(guān)于對(duì)稱,且
(1)求橢圓的離心率;
(2)已知是過三點(diǎn)的圓上的點(diǎn),若的面積為,求點(diǎn)到直線距離的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為(,0).
(1)求雙曲線C的方程;
(2)若直線l:y=kx+與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且·>2(其中O為原點(diǎn)),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,,的面積為.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)圓心在軸上的圓與橢圓在軸的上方有兩個(gè)交點(diǎn),且圓在這兩個(gè)交點(diǎn)處的兩條切線相互垂直并分別過不同的焦點(diǎn),求圓的半徑..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

對(duì)任意實(shí)數(shù),直線與橢圓恒有公共點(diǎn),則
取值范圍是         

查看答案和解析>>

同步練習(xí)冊(cè)答案