如圖,設(shè)橢圓的左右焦點(diǎn)為,上頂點(diǎn)為,點(diǎn)關(guān)于對(duì)稱,且
(1)求橢圓的離心率;
(2)已知是過(guò)三點(diǎn)的圓上的點(diǎn),若的面積為,求點(diǎn)到直線距離的最大值。

(1);(2)4.

解析試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程、勾股定理、點(diǎn)到直線的距離、直線與圓的位置關(guān)系等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問(wèn),先通過(guò)對(duì)稱性得到B點(diǎn)坐標(biāo),利用兩點(diǎn)間距離公式得的3個(gè)邊長(zhǎng),利用勾股定理列出關(guān)系式,化簡(jiǎn)出離心率e的值;第二問(wèn),利用第一問(wèn)知是邊長(zhǎng)為a的正三角形,利用三角形面積,得到a的值,從而得到b和c的值,由于,所以圓是以為圓心,為半徑,則可直接寫出圓的方程,因?yàn)辄c(diǎn)p到直線的最大距離為圓心到直線的距離加上半徑,所以利用點(diǎn)到直線的距離公式計(jì)算即可.
試題解析:(1)
及勾股定理可知,即
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a9/4/1x8iy3.png" style="vertical-align:middle;" />,所以,解得
(2)由(1)可知是邊長(zhǎng)為的正三角形,所以
解得
可知直角三角形的外接圓以為圓心,半徑
即點(diǎn)在圓上,
因?yàn)閳A心到直線的距離為
故該圓與直線相切,所以點(diǎn)到直線的最大距離為
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程、勾股定理、點(diǎn)到直線的距離、直線與圓的位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線C: 的焦點(diǎn)為F,ABQ的三個(gè)頂點(diǎn)都在拋物線C上,點(diǎn)M為AB的中點(diǎn),.(1)若M,求拋物線C方程;(2)若的常數(shù),試求線段長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的左,右兩個(gè)頂點(diǎn)分別為.曲線是以、兩點(diǎn)為頂點(diǎn),離心率為的雙曲線.設(shè)點(diǎn)在第一象限且在曲線上,直線與橢圓相交于另一點(diǎn)
(1)求曲線的方程;
(2)設(shè)、兩點(diǎn)的橫坐標(biāo)分別為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的短軸長(zhǎng)為,且斜率為的直線過(guò)橢圓的焦點(diǎn)及點(diǎn)
(1)求橢圓的方程;
(2)已知直線過(guò)橢圓的左焦點(diǎn),交橢圓于點(diǎn)P、Q.
(ⅰ)若滿足為坐標(biāo)原點(diǎn)),求的面積;
(ⅱ)若直線與兩坐標(biāo)軸都不垂直,點(diǎn)軸上,且使的一條角平分線,則稱點(diǎn)為橢圓的“特征點(diǎn)”,求橢圓的特征點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知△ABC的周長(zhǎng)為12,頂點(diǎn)A,B的坐標(biāo)分別為(-2,0),(2,0),C為動(dòng)點(diǎn).
(1)求動(dòng)點(diǎn)C的軌跡E的方程;
(2)過(guò)原點(diǎn)作兩條關(guān)于y軸對(duì)稱的直線(不與坐標(biāo)軸重合),使它們分別與曲線E交于兩點(diǎn),求四點(diǎn)所對(duì)應(yīng)的四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)A,B分別為橢圓=1(a>b>0)的左、右頂點(diǎn),(1,)為橢圓上一點(diǎn),橢圓長(zhǎng)半軸長(zhǎng)等于焦距.
(1)求橢圓的方程;
(2)設(shè)P(4,x)(x≠0),若直線AP,BP分別與橢圓相交于異于A,B的點(diǎn)M,N,求證:∠MBN為鈍角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知線段,的中點(diǎn)為,動(dòng)點(diǎn)滿足為正常數(shù)).
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求動(dòng)點(diǎn)所在的曲線方程;
(2)若,動(dòng)點(diǎn)滿足,且,試求面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓.
(1)求橢圓的離心率;
(2)設(shè)為原點(diǎn),若點(diǎn)在橢圓上,點(diǎn)在直線上,且,試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)拋物線的準(zhǔn)線與x軸交于點(diǎn)Q,若過(guò)點(diǎn)Q的直線與拋物線有公共點(diǎn),則直線的斜率的取值范圍是        

查看答案和解析>>

同步練習(xí)冊(cè)答案