函數(shù)y=5sin(
π
6
-
π
3
x)的最小正周期為
 
考點(diǎn):正弦函數(shù)的圖象,三角函數(shù)的周期性及其求法
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:由條件根據(jù)函數(shù)y=Asin(ωx+φ)的周期為
|ω|
,可得結(jié)論.
解答: 解:函數(shù)y=5sin(
π
6
-
π
3
x)的最小正周期為T(mén)=
|ω|
=
π
3
=6,
故答案為:6.
點(diǎn)評(píng):本題主要考查函數(shù)y=Asin(ωx+φ)的周期性,利用了函數(shù)y=Asin(ωx+φ)的周期為
|ω|
,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠ABC=90°,以AB為直徑的圓O交AC于點(diǎn)E,點(diǎn)D是BC邊上的中點(diǎn),連接OD交圓O與點(diǎn)M.
(1)求證:DE是圓O的切線;
(2)求證:DE•BC=DM•AC+DM•AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

任取實(shí)數(shù)a,b∈[-1,1],則a,b滿足|b|≥|
a
2
|的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正六邊形ABCDEF中,AB=2,則(
BC
-
BA
)•(
AF
+
BC
)=(  )
A、-6
B、-2
3
C、2
3
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=2sin(2x+
π
6
)+a-1(a∈R)在區(qū)間[0,
π
2
]上有兩個(gè)零點(diǎn)x1,x2(x1≠x2),則x1+x2-a的取值范圍是( 。
A、(
π
3
-1,
π
3
+1)
B、[
π
3
,
π
3
+1)
C、(
3
-1,
3
+1)
D、[
3
,
3
+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

F是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn),過(guò)點(diǎn)F向C的一條漸近線引垂線,垂足為 A,交另一條漸近線于點(diǎn) B.若2
AF
=
FB
,則C的離心率是( 。
A、
2
B、2
C、
2
3
3
D、
14
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(ax-1)(a>0,且a≠1)
(1)證明函數(shù)f(x)的圖象在y軸的一側(cè)
(2)設(shè)A(x1,y1),B(x2,y  2)(x1<x2)圖象上兩點(diǎn),證明直線AB的斜率大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|sinx-a|,a∈R.
(1)試討論函數(shù)f(x)的奇偶性;
(2)求當(dāng)f(x)取得最大值時(shí),自變量x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足前n項(xiàng)和Sn=n2+1,數(shù)列{bn}滿足bn=
2
an+1
,且前n項(xiàng)和為T(mén)n,設(shè)cn=T2n+1-Tn
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)判斷數(shù)列{cn}的單調(diào)性;
(3)當(dāng)n≥2時(shí),T2n+1-Tn
1
5
-
7
12
log2(a-1)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案