如圖,正六邊形ABCDEF中,AB=2,則(
BC
-
BA
)•(
AF
+
BC
)=( 。
A、-6
B、-2
3
C、2
3
D、6
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:正六邊形的內(nèi)角為120°,并且相對(duì)的邊平行,再根據(jù)相等向量,從而得到(
BC
-
BA
)•(
AF
+
BC
)
=
BC
CD
+
BC
2
-
BA
AF
-
BA
BC
=6
解答: 解:根據(jù)正六邊形的邊的關(guān)系及內(nèi)角的大小便得:
(
BC
-
BA
)•(
AF
+
BC
)
=
BC
AF
+
BC
2
-
BA
AF
-
BA
BC
=
BC
CD
+4-
BA
AF
-
BA
BC
=2+4-2+2=6.
故選:D.
點(diǎn)評(píng):考查正六邊形的內(nèi)角大小,以及對(duì)邊的關(guān)系,相等向量,以及數(shù)量積的運(yùn)算公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

確定下列三角函數(shù)值的符號(hào):(1)tan505°(2)tan(-
23π
4
)(3)cos(-
59π
17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x-3的零點(diǎn)所在的區(qū)間為( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(x-
π
6
)+cosx.
(1)求函數(shù)f(x)的最小正周期;
(2)若α是第一象限角,且f(α+
π
3
)=
4
5
,求tan(α-
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(x+1)+2的零點(diǎn)所在區(qū)間是(  )
A、(-
1
2
7
8
B、(
7
8
,1)
C、(-1,
1
2
D、(1,
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

貴州省2014年全省高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全省100000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學(xué)校高三年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于160cm和184cm之間,將測(cè)量結(jié)果按如下方式分成6組:第1組[160,164),第2組[164,168),…,第6組[180,184],如圖是按上述分組方法得到的頻率分布直方圖.
(1)求這50名男生身高在172cm以上(含172cm)的人數(shù);
(2)求全省高中男生身高排名(從高到低) 前130名中最低身高是多少;
(3)在這50名男生身高在172cm以上(含172cm)的人中任意抽取2人,將該2人中身高排名(從高到低)在全省前130名的人數(shù)記為X,求X的數(shù)學(xué)期望.
參考數(shù)據(jù):
若X~N(μ,σ2),則P(μ-σ<X≤μ+σ)=0.6826,
P(μ-2σ<X≤μ+2σ)=0.9544,
P(μ-3σ<X≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=5sin(
π
6
-
π
3
x)的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
|x+2|
+x
,若函數(shù)g(x)=f(x)-2|x|-m有四個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一塊大理石表示的幾何體的三視圖如圖所示,將該大理石切削、打磨加工成球體,則能得到的最大球體的體積為( 。
A、
3
B、
32π
3
C、36π
D、
256π
3

查看答案和解析>>

同步練習(xí)冊(cè)答案