已知0<k<1+
2
,試比較1+
1
k
與k-1的大。
考點(diǎn):不等式比較大小
專(zhuān)題:不等式的解法及應(yīng)用
分析:利用“作差法”即可比較出大。
解答: 解:∵0<k<1+
2
,
∴1+
1
k
-(k-1)=2+
1
k
-k=
-(k2-2k-1)
k
=
-(k-1-
2
)(k-1+
2
)
k
>0,
∴1+
1
k
>k-1.
點(diǎn)評(píng):本題考查了“作差法”比較數(shù)的大小,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°,E為BC中點(diǎn)
(Ⅰ)證明:A1C∥平面AB1E
(Ⅱ)證明:AB⊥A1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3+33+333+…+
33…3
n個(gè)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

分別指出由下列各組命題構(gòu)成的“p∧q”,“p∨q“,“非p“命題的真假.
①p:-4<0;q:4>0;
②p:25是5的倍數(shù);q:25是4的倍數(shù);
③p:2是x+1=0的根;q:-1是x+1=0的根;
④p:∅=0;q:∅={0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)在(0,+∞)上單調(diào)遞增,且f(1)=0,當(dāng)f(lgt)<0時(shí),則t的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}、{bn}的各項(xiàng)均為正數(shù)且對(duì)任意n∈N+,都有an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列,且a1=10,a2=15.
(1)求證:數(shù)列{
bn
}是等差數(shù)列并求出數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)Sn=
1
a1
+
1
a2
+…+
1
an
,如果對(duì)任意n∈N+,不等式2a•Sn<2-
bn
an
恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
sinx
1+cos2x-sin2x

(1)求函數(shù)的定義域;
(2)用定義判斷f(x)的奇偶性;
(3)在[-π,π]上作出f(x)的圖象;
(4)寫(xiě)出f(x)的最小正周期及單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2ax,g(x)=-x2-1.
(Ⅰ)若函數(shù)y=f(x)的圖象始終在函數(shù)y=g(x)的圖象的上方,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)y=f(x)與y=g(x)的圖象有兩條公切線(xiàn),且由四個(gè)切點(diǎn)組成的四邊形的周長(zhǎng)為6,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸出a的值大于2014,判斷框內(nèi)為k≤m,則整數(shù)m的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案