A. | (-∞,-1)∪(1,+∞) | B. | (-∞,-1)∪(0,1) | C. | (-1,0)∪(0,1) | D. | (-1,0)∪(1,+∞) |
分析 構(gòu)造函數(shù)g(x)=$\frac{f(x)}{x}$,求導(dǎo),利用導(dǎo)數(shù)可以判斷g(x)在(0,+∞)內(nèi)單調(diào)遞減;再由f(1)=0,易得f(x)在(0,+∞)內(nèi)的正負(fù)性;最后結(jié)合奇函數(shù)的圖象特征,可得f(x)在(-∞,0)內(nèi)的正負(fù)性.則x2f(x)>0?f(x)>0的解集即可求得.
解答 解:設(shè)g(x)=$\frac{f(x)}{x}$,
∴g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
∵當(dāng)x>0時(shí),xf′(x)-f(x)<0,
∴當(dāng)x>0時(shí),g′(x)<0,
∴g(x)在(0,+∞)為減函數(shù),
∵f(1)=0,∴g(1)=0
∴當(dāng)x∈(0,1)時(shí),g(x)=$\frac{f(x)}{x}$>0,∴f(x)>0;
當(dāng)x∈(1,+∞)時(shí),g(x)=$\frac{f(x)}{x}$<0.∴f(x)<0.
又∵f(x)是定義在R上的奇函數(shù),
∴當(dāng)x∈(-1,0)時(shí),f(x)<0;
當(dāng)x∈(-∞,-1)時(shí),f(x)>0.
又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.
∴x2f(x)>0的解集是(-∞,-1)∪(0,1).
故選:B
點(diǎn)評(píng) 本題主要考查了函數(shù)單調(diào)性與奇偶性的應(yīng)用.在判斷函數(shù)的單調(diào)性時(shí),常可利用導(dǎo)函數(shù)來(lái)判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x=2是f(x)的極小值點(diǎn) | |
B. | 函數(shù)y=f(x)-x有且只有1個(gè)零點(diǎn) | |
C. | 存在正實(shí)數(shù)k,使得f(x)>kx恒成立 | |
D. | 對(duì)任意兩個(gè)正實(shí)數(shù)x1,x2,且x2>x1,若f(x1)=f(x2),則x1+x2>4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 9 | C. | 16 | D. | 17 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com