1.命題“若x+y=1,則xy≤1”的否命題是(  )
A.若x+y=1,則xy>1B.若x+y≠1,則xy≤1C.若x+y≠1,則xy>1D.若xy>1,則x+y≠1

分析 根據(jù)已知中的原命題,結(jié)論否命題的定義,可得答案.

解答 解:命題“若x+y=1,則xy≤1”的否命題是命題“若x+y≠1,則xy>1”,
故選C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是四種命題,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=aex-sinx在x=0處有極值,則a的值為(  )
A.-1B.0C.1D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.為比較甲、乙兩地某月14時(shí)的氣溫狀況,隨機(jī)選取該月中的5天,將這5天中14時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖.考慮以下結(jié)論:
①甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫;
②甲地該月14時(shí)的平均氣溫高于乙地該月14時(shí)的平均氣溫;
③甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差大于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差.
④甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差小于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差;
其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的標(biāo)號(hào)為( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,則AD與平面AA1C1C所成的角的正弦值為$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知p:x2-4x-5>0,q:x2-2x+1-λ2>0,若p是q的充分不必要條件,則正實(shí)數(shù)λ的取值范圍是( 。
A.(0,1]B.(0,2)C.$({0,\frac{3}{2}}]$D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.直線x-$\sqrt{3}$y=3的傾斜角的大小為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)a>0,b>0.若$\sqrt{3}$是3a與32b的等比中項(xiàng),則$\frac{2}{a}$+$\frac{1}$的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列說法正確的是( 。
A.命題“若x2>1,則x>1”的否命題為“若x2>1,則x≤1”
B.命題“若$?{x_0}∈R,{x_0}^2>1$”的否定是“?x∈R,x2<1”
C.命題“若x=y,則cosx=cosy”的逆否命題為假命題
D.命題“若x=y,則cosx=cosy”的逆命題為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的上頂點(diǎn)M與左、右焦點(diǎn)F1,F(xiàn)2構(gòu)成三角形MF1F2面積為$\sqrt{3}$,又橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$,左右頂點(diǎn)分別為P,Q.
(1)求橢圓C的方程;
(2)過點(diǎn)D(m,0)(m∈(-2,2),m≠0)作兩條射線分別交橢圓C于A,B兩點(diǎn)(A,B在長軸PQ同側(cè)),直線AB交長軸于點(diǎn)S(n,0),且有∠ADP=∠BDQ.求證:mn為定值;
(3)橢圓C的下頂點(diǎn)為N,過點(diǎn)T(t,2)(t≠0)的直線TM,TN分別與橢圓C交于E,F(xiàn)兩點(diǎn).若△TMN的面積是△TEF的面積的λ倍,求λ的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案