10.下列說法正確的是( 。
A.命題“若x2>1,則x>1”的否命題為“若x2>1,則x≤1”
B.命題“若$?{x_0}∈R,{x_0}^2>1$”的否定是“?x∈R,x2<1”
C.命題“若x=y,則cosx=cosy”的逆否命題為假命題
D.命題“若x=y,則cosx=cosy”的逆命題為假命題

分析 寫出原命題的否命題,可判斷A;寫出原命題的否定命題,可判斷B;判斷原命題的真假,進(jìn)而可判斷其逆否命題的真假;寫出原命題的逆命題,可判斷D.

解答 解:命題“若x2>1,則x>1”的否命題為“若x2≤1,則x≤1”,故A錯(cuò)誤;
命題“若$?{x_0}∈R,{x_0}^2>1$”的否定是“?x∈R,x2≤1”,故B錯(cuò)誤;
命題“若x=y,則cosx=cosy”是真命題,故其逆否命題為真命題,故C錯(cuò)誤;
命題“若x=y,則cosx=cosy”的逆命題為命題“若cosx=cosy,則x=y”為假命題,故D正確;
故選:D

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題,特稱命題的否定,難度基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)a∈R,若函數(shù)f(x)=ex+ax有大于0的極值點(diǎn),則a的取值范圍是a<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.命題“若x+y=1,則xy≤1”的否命題是( 。
A.若x+y=1,則xy>1B.若x+y≠1,則xy≤1C.若x+y≠1,則xy>1D.若xy>1,則x+y≠1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若奇函數(shù)f(x)定義域?yàn)镽,f(x+2)=-f(x)且f(-1)=6,則f(2017)=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的各項(xiàng)均不為0,a1=$\frac{1}{2}$,且滿足3an+1-an+2an+1an=0,數(shù)列{bn}滿足bn=$\frac{1}{a_n}$+1.
(Ⅰ)求證:數(shù)列{bn}為等比數(shù)列;
(Ⅱ)若cn=$\frac{n}{a_n}$,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如表提供了某廠節(jié)能降耗技術(shù)改造后在生產(chǎn)A產(chǎn)品過程中紀(jì)錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對(duì)應(yīng)數(shù)據(jù):
x3456
y2.5n44.5
根據(jù)上表提供的數(shù)據(jù),求得y關(guān)于x的線性回歸方程為$\widehat{y}$=0.7x+0.35,那么表中n的值為( 。┳ⅲ$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$)
A.3B.3.15C.3.5D.4.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直線l1:y=-1和直線l2:3x-4y+19=0,拋物線x2=4y上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和最小值為( 。
A.3B.2C.$\frac{24}{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},則B∩∁UA=(  )
A.{2}B.{4,6}C.{1,3,5}D.{4,6,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在四棱錐P-ABCD中,側(cè)面PAD是邊長(zhǎng)為4的正三角形,底面ABCD為正方形,側(cè)面PAD⊥底面ABCD,M為底面ABCD內(nèi)的一個(gè)動(dòng)點(diǎn),且滿足$\overrightarrow{MP}•\overrightarrow{MC}=0$,則點(diǎn)M到直線AB的最短距離為(  )
A.$\sqrt{5}$B.$4-\sqrt{5}$C.$3-\sqrt{5}$D.$4-2\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案