A. | $8\sqrt{2}$ | B. | $4\sqrt{2}$ | C. | 12 | D. | $5\sqrt{10}$ |
分析 判斷三視圖復(fù)原的幾何體的形狀,底面為等腰直角三角形,一條側(cè)棱垂直底面的一個頂點,結(jié)合數(shù)據(jù)求出外接球的半徑,由此能求出結(jié)果.
解答 解:三視圖復(fù)原的幾何體如圖,
它是底面為等腰直角三角形,一條側(cè)棱垂直底面的一個頂點,
它的外接球,就是擴(kuò)展為長方體的外接球,
外接球的直徑是2$\sqrt{2}$,
該幾何體的外接球的體積V1=$\frac{4}{3}$π($\sqrt{2}$)3=$\frac{8\sqrt{2}}{3}$π.
V2=2×($\frac{1}{3}$×12×π×1)=$\frac{2}{3}$π,
∴V1:V2=$\frac{8\sqrt{2}}{3}$π:$\frac{2}{3}$π=4$\sqrt{2}$.
故選:B.
點評 本題考查三視圖求幾何體的外接球的體積,考查空間想象能力,計算能力,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (1,2) | C. | (2,3) | D. | (3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
井號I | 1 | 2 | 3 | 4 | 5 | 6 |
坐標(biāo)(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
鉆探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com