(本小題共14分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,經(jīng)過點(diǎn)且離心率.過定點(diǎn)的直線與橢圓相交于,兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存
在,請說明理由.
(Ⅰ)設(shè)橢圓方程為
由已知可得,解得 
所求橢圓的方程為 .        -------------5分
(Ⅱ)設(shè)
當(dāng)直線軸不垂直時(shí),設(shè)直線的方程為








是與無關(guān)的常數(shù),

,即
此時(shí),
當(dāng)直線軸垂直時(shí),則直線的方程為
此時(shí)點(diǎn)的坐標(biāo)分別為
當(dāng)時(shí), 亦有
綜上,在軸上存在定點(diǎn),使為常數(shù).------------ 14分
略       
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)橢圓的左、右焦點(diǎn)分別為是橢圓上的一點(diǎn),,原點(diǎn)到直線的距離為
(Ⅰ)證明;
(Ⅱ)設(shè)為橢圓上的兩個(gè)動點(diǎn),,過原點(diǎn)作直線的垂線,垂足為,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題10分)在平面直角坐標(biāo)系xoy中,設(shè)P(x,y)是橢圓上的一個(gè)動點(diǎn),求S=x+y的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的長軸長為10,兩焦點(diǎn)的坐標(biāo)分別為
(1)求橢圓的標(biāo)準(zhǔn)方程    (2)若P為短軸的一個(gè)端點(diǎn),求三角形的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓的左焦點(diǎn)F。右頂點(diǎn)A,上頂點(diǎn)B,若,則橢圓的離心率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知點(diǎn)F橢圓E:的右焦點(diǎn),點(diǎn)M在橢圓E上,以M為圓心的圓與x軸切于點(diǎn)F,與y軸交于A、B兩點(diǎn),且是邊長為2的正三角形;又橢圓E上的P、Q兩點(diǎn)關(guān)于直線對稱.
(1)求橢圓E的方程;(2)當(dāng)直線過點(diǎn)()時(shí),求直線PQ的方程;
(3)若點(diǎn)C是直線上一點(diǎn),且=,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知半徑為2的圓柱面,一平面與圓柱面的軸線成45°角,則截線橢圓的焦距為
A.B.2C.4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

動點(diǎn)為參數(shù))的軌跡的普通方程為(   )
          B 
          D 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

查看答案和解析>>

同步練習(xí)冊答案