【題目】已知函數(shù) ,且 ,f(0)=0
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的值域;
(3)求證:方程f(x)=lnx至少有一根在區(qū)間(1,3).
【答案】
(1)解:由已知可得 , ,
解得,a=1,b=﹣1,所以,
(2)解:∵y=f(x)= ,∴分離2x得,2x= ,
由2x>0,解得y∈(﹣1,1),
所以,函數(shù)f(x)的值域?yàn)椋ī?,1)
(3)解:令g(x)=f(x)﹣lnx= ﹣lnx,因?yàn)椋?/span>
g(1)=f(1)﹣ln1= >0,
g(3)=f(3)﹣ln3= ﹣ln3<0,
根據(jù)零點(diǎn)存在定理,函數(shù)g(x)至少有一零點(diǎn)在區(qū)間(1,3),
因此,方程f(x)﹣lnx=0至少有一根在區(qū)間(1,3)上
【解析】(1)根據(jù)f(1)和f(0)列方程,求出a,b;(2)由y= ,分離2x= >0,求得值域;(3)構(gòu)造函數(shù)g(x)=f(x)﹣lnx,運(yùn)用函數(shù)零點(diǎn)存在定理,確定函數(shù)在(1,3)存在零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),設(shè)關(guān)于的方程有個(gè)不同的實(shí)數(shù)解,則的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知異面直線a,b所成角為60度,A為空間一點(diǎn),則過(guò)點(diǎn)A與a,b都成60度角的直線有( )條.
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各函數(shù)在其定義域中,既是奇函數(shù),又是增函數(shù)的是( )
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】首屆世界低碳經(jīng)濟(jì)大會(huì)在南昌召開(kāi),本屆大會(huì)以“節(jié)能減排,綠色生態(tài)”為主題.某單位在國(guó)家科研部門(mén)的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為300噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為 ,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為200元.
(1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則需要國(guó)家至少補(bǔ)貼多少元才能使該單位不虧損?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,A1 , A2 , B1 , B2為橢圓頂點(diǎn),F(xiàn)2為右焦點(diǎn),延長(zhǎng)B1F2與A2B2交于點(diǎn)P,若∠B1PB2為鈍角,則該橢圓離心率的取值范圍是( )
A.( ,1)
B.(0, )
C.(0, )
D.( ,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x| <0,x∈R},B={x|x2﹣2x﹣m<0,x∈R}
(1)當(dāng)m=3時(shí),求A∩(RB);
(2)若A∩B={x|﹣1<x<4},求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐中, , 為的中點(diǎn), 為的中點(diǎn),且為正三角形.
(1)求證: 平面;
(2)若,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(為自然對(duì)數(shù)的底數(shù)),, .
(1)若是的極值點(diǎn),且直線分別與函數(shù)和的圖象交于,求兩點(diǎn)間的最短距離;
(2)若時(shí),函數(shù)的圖象恒在的圖象上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com