【題目】已知三棱錐中, , 為的中點, 為的中點,且為正三角形.
(1)求證: 平面;
(2)若,求點到平面的距離.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)根據(jù)正三角形三線合一,可得,利用三角形中位線定理及空間直線夾角的定義可得,由線面垂直的判定定理可得平面,即,再由結(jié)合線面垂直的判定定理可得平面;(2)記點到平面的距離為,則有,分別求出的長,及和面積,利用等積法可得答案.
試題解析:(1)證明:如圖,∵為正三角形,且為的中點,
∴.
又∵為的中點, 為的中點,
∴,∴.
又已知,
∴平面,∴.
又∵,
∴平面.
(2)解:法一:記點到平面的距離為,則有
∵ ∴,
又,∴,
∴,又,∴,
在中, ,又∵,
∴,
∴,∴
即點到平面的距離為.
法二:∵平面平面且交線為,過作,則平面, 的長為點到平面的距離;
∵,∴,又,∴,∴.
又,
∴,
∴,即點到平面的距離為.
【方法點晴】本題主要考查的是線面垂直、棱錐的體積公式以及“等積變換”的應(yīng)用,屬于中檔題.解題時一定要注意二面角的平面角是銳角還是鈍角,否則很容易出現(xiàn)錯誤.證明線面垂直的關(guān)鍵是證明線線垂直,證明線線垂直常用的方法是直角三角形、等腰三角形的“三線合一”和菱形、正方形的對角線.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求曲線在處的切線方程;
(2)討論的單調(diào)性;
(3)設(shè)過兩點的直線的斜率為,其中、為曲線上的任意兩點,并且,若恒成立,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,且 ,f(0)=0
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的值域;
(3)求證:方程f(x)=lnx至少有一根在區(qū)間(1,3).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在某商業(yè)區(qū)周邊有 兩條公路和,在點處交匯,該商業(yè)區(qū)為圓心角,半徑3的扇形,現(xiàn)規(guī)劃在該商業(yè)區(qū)外修建一條公路,與,分別交于,要求與扇形弧相切,切點不在,上.
(1)設(shè)試用表示新建公路的長度,求出滿足的關(guān)系式,并寫出的范圍;
(2)設(shè),試用表示新建公路的長度,并且確定的位置,使得新建公路的長度最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直線坐標(biāo)系中,以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.
(1)直線的普通方程和曲線的參數(shù)方程;
(2)設(shè)點在上, 在處的切線與直線垂直,求的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在汶川大地震后對唐家山堰塞湖的搶險過程中,武警官兵準(zhǔn)備用射擊的方法引爆從湖壩上游漂流而下的一個巨大的汽油罐.已知只有5發(fā)子彈,第一次命中只能使汽油流出,第二次命中才能引爆.每次射擊是相互獨立的,且命中的概率都是.
(1)求油罐被引爆的概率;
(2)如果引爆或子彈打光則停止射擊,設(shè)射擊次數(shù)為,求的分布列及.( 結(jié)果用分?jǐn)?shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓的焦點,直線AF的斜率為 ,O為坐標(biāo)原點. (Ⅰ)求E的方程;
(Ⅱ)設(shè)過點A的直線l與E相交于P,Q兩點,當(dāng)△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足條件an+1= .
(1)若a1= ,求a2 , a3 , a4的值.
(2)已知對任意的n∈N+ , 都有an≠1,求證:an+3=an對任意的正整數(shù)n都成立;
(3)在(1)的條件下,求a2015 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com