已知等差數(shù)列{an}的首項(xiàng)為a,公差為b,且不等式log2(ax2-3x+6)>2的解集為{x|x<1或x>b}.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn公式;
(Ⅱ)求數(shù)列{
1anan+1
}的前n項(xiàng)和Tn
分析:(Ⅰ)先將不等式log2(ax2-3x+6)>2轉(zhuǎn)化為ax2-3x+2>0,所給條件表明:ax2-3x+2>0的解集為{x|x<1orx>b},根據(jù)不等式解集的意義及方程ax2-3x+2=0的兩根為x1=1、x2=b.結(jié)合利用韋達(dá)定理不難得出a,b.從而得出數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn公式.
(Ⅱ)令bn=
1
anan+1
=
1
(2n-1)•(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
利用拆項(xiàng)相消法即可求得數(shù)列{
1
anan+1
}的前n項(xiàng)和Tn
解答:解:(Ⅰ)∵不等式log2(ax2-3x+6)>2可轉(zhuǎn)化為ax2-3x+2>0,
所給條件表明:ax2-3x+2>0的解集為{x|x<1orx>b},根據(jù)不等式解集的意義
可知:方程ax2-3x+2=0的兩根為x1=1、x2=b.
利用韋達(dá)定理不難得出a=1,b=2.
由此知an=1+2(n-1)=2n-1,sn=n2…(6分)
(Ⅱ)令bn=
1
anan+1
=
1
(2n-1)•(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

Tn=b 1+b2+b3+…+bn=
1
2
[(
1
1
-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n-1
-
1
2n+1
 
)]

=
1
2
(1-
1
2n+1
)
…(12分)
點(diǎn)評(píng):本小題主要考查數(shù)列的求和、數(shù)列與函數(shù)的綜合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿(mǎn)足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿(mǎn)足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿(mǎn)足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫(xiě)出解答過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案