【題目】選修4-4,坐標系與參數(shù)方程

已知在平面直角坐標系xOy中,橢圓C的方程為,以O為極點,x軸的非負半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為

(1)求直線的直角坐標方程;

(2)設Mxy)為橢圓C上任意一點,求|x+y﹣1|的最大值.

【答案】(1)(2)9

【解析】試題分析:(1)根據(jù) 將直線極坐標方程化為直角坐標方程,(2)根據(jù)橢圓參數(shù)方程化簡|x+y﹣1|,再根據(jù)三角函數(shù)有界性以及絕對值定義確定函數(shù)最大值.

試題解析:(1)根據(jù)題意,橢圓C的方程為+=1,

則其參數(shù)方程為,(α為參數(shù));

直線l的極坐標方程為ρsin(θ+)=3,變形可得ρsinθcos+ρcosθsin=3,

ρsinθ+ρcosθ=3,,將x=ρcosθ,y=ρsinθ代入可得x+y﹣6=0,

即直線l的普通方程為x+y﹣6=0;

(2)根據(jù)題意,M(x,y)為橢圓一點,則設M(2cosθ,4sinθ),

|2x+y﹣1|=|4cosθ+4sinθ﹣1|=|8sin(θ+)﹣1|,

分析可得,當sin(θ+)=﹣1時,|2x+y﹣1|取得最大值9.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)探究函數(shù)的單調(diào)性;

(Ⅱ)若上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某市31日至14日的空氣質(zhì)量指數(shù)趨勢圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機選擇31日至313日中的某一天到達該市,并停留2天.

Ⅰ)求此人到達當日空氣重度污染的概率;

Ⅱ)設X是此人停留期間空氣質(zhì)量優(yōu)良的天數(shù),求X的分布列與數(shù)學期望;

Ⅲ)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱中,底面為等腰梯形,.

(1)證明:;

(2)設是線段上的動點,是否存在這樣的點,使得二面角的余弦值為,如果存在,求出的長;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在數(shù)列中, , .

(1)證明數(shù)列是等差數(shù)列,并求的通項公式;

(2)設數(shù)列的前項和為,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知A、B、C是長軸長為4的橢圓E上的三點,點A是長軸的一個端點,BC過橢圓中心O,且,|BC|=2|AC|.

(1)求橢圓E的方程;

(2)在橢圓E上是否存點Q,使得?若存在,有幾個(不必求出Q點的坐標),若不存在,請說明理由.

(3)過橢圓E上異于其頂點的任一點P,作的兩條切線,切點分別為MN,若直線MNx軸、y軸上的截距分別為m、n,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)過中央電視臺《魅力中國城》欄目的三輪角逐,黔東南州以三輪競演總分排名第一名問鼎“最具人氣魅力城市”.如圖統(tǒng)計了黔東南州從2010年到2017年的旅游總人數(shù)(萬人次)的變化情況,從一個側面展示了大美黔東南的魅力所在.根據(jù)這個圖表,在下列給出的黔東南州從2010年到2017年的旅游總人數(shù)的四個判斷中,錯誤的是( )

A. 旅游總人數(shù)逐年增加

B. 2017年旅游總人數(shù)超過2015、2016兩年的旅游總人數(shù)的和

C. 年份數(shù)與旅游總人數(shù)成正相關

D. 從2014年起旅游總人數(shù)增長加快

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018屆寧夏育才中學高三上學期期末】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示),由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的.

1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

由表中的數(shù)據(jù)顯示, 之間存在著線性相關關系,請將(2)的結果填入空白欄,并求出關于的回歸直線方程.

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案