精英家教網 > 高中數學 > 題目詳情
當a+b="10," c=2時的橢圓的標準方程是                    .

試題分析:由解得:,所以橢圓的標準方程為。
點評:當不知道橢圓的焦點在哪一坐標軸上的時候要想著討論。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

一動點到y(tǒng)軸的距離比到點(2,0)的距離小2,則此動點的軌跡方程為___________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題12分)設,在平面直角坐標系中,已知向量,向量,,動點的軌跡為E. 求軌跡E的方程,并說明該方程所表示曲線的形狀.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
已知拋物線的頂點為坐標原點,焦點在軸上. 且經過點,
(1)求拋物線的方程;
(2)若動直線過點,交拋物線兩點,是否存在垂直于軸的直線被以為直徑的圓截得的弦長為定值?若存在,求出的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

拋物線的準線方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設橢圓的左、右頂點分別為、,點在橢圓上且異于、兩點,為坐標原點.
(1)若直線的斜率之積為,求橢圓的離心率;
(2)對于由(1)得到的橢圓,過點的直線軸于點,交軸于點,若,求直線的斜率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知為雙曲線的左、右焦點.
(Ⅰ)若點為雙曲線與圓的一個交點,且滿足,求此雙曲線的離心率;
(Ⅱ)設雙曲線的漸近線方程為到漸近線的距離是,過的直線交雙曲線于A,B兩點,且以AB為直徑的圓與軸相切,求線段AB的長.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C:的左,右焦點分別為,過 的直線L與橢圓C相交 A,B于兩點,且直線L的傾斜角為,點到直線L的距離為 ,
(1)  求橢圓C的焦距.(2)如果求橢圓C的方程.(12分)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

中,=90°,.若以為焦點的橢圓經過點,則該橢圓的離心率         

查看答案和解析>>

同步練習冊答案