精英家教網 > 高中數學 > 題目詳情
精英家教網如圖所示,在直角梯形ABCD中,|AD|=3,|AB|=4,|BC|=
3
,曲線段DE上任一點到A、B兩點的距離之和都相等.
(1)建立適當的直角坐標系,求曲線段DE的方程;
(2)過C能否作一條直線與曲線段DE相交,且所得弦以C為中點,如果能,求該弦所在的直線的方程;若不能,說明理由.
分析:(!)由題意,先建立平面直角坐標系,利用曲線的方程這一概念求其動點的軌跡方程,要注意求解方程之后要有題意去排雜;
(2)對于(2)這種是否C能否,往往要利用假設的思想,設出變量,存在建立方程求解,不存在會產生矛盾及可求解.
解答:解:(1)以直線AB為x軸,線段AB的中點為原點建立直角坐標系,
則A(-2,0),B(2,0),C(2,
3
),D(-2,3).
依題意,曲線段DE是以A、B為焦點的橢圓的一部分.
∵a=
1
2
(|AD|+|BD|)=4,c=2,b2
=12,
∴所求方程為
x2
16
+
y2
12
=1(-2≤x≤4,0≤y≤2
3
)


(2)設這樣的弦存在,其方程y-
3
=k(x-2),即y=k(x-2)+
3
,將其代入
x2
16
+
y2
12
=1
(3+4k2)x2+(8
3
k-16k2)x+16k2-16
3
k-36=0
設弦的端點為M(x1,y1),N(x2,y2),則由
x1+x2
2
=2,知x1+x2=4,∴-
8
3
k-16k2
3+4k2
=4,解得k=-
3
2

∴弦MN所在直線方程為y=-
3
2
x+2
3
,驗證得知,這時M(0,2
3
),N(4,0)
適合條件.
故這樣的直線存在,其方程為y=-
3
2
x+2
3
點評:(1)重點考查了利用曲線的方程這一概念,先建立平面直角坐標系,然后利用定義法求其動點的軌跡方程,并進行實際問題的排雜;
(2)重點考查了假設存在,建立方程求解或找矛盾的這一常用方法,還考查了直線方程與曲線方程產生交點要聯立,用設而不求整體代換的思想求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖所示,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=
12
AP=2,D是AP的中點,E,F,G分別為PC,PD,CB的中點,將△PCD沿CD折起,使得PD⊥平面ABCD.
(1)求證:AP∥平面EFG;
(2)求二面角G-EF-D的大小.
精英家教網

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,在直角梯形OABC中,∠COA=∠OAB=
π2
,OA=OS=AB=1,OC=2,點M是棱SB的中點,N是OC上的點,且ON:NC=1:3.
(1)求異面直線MN與BC所成的角;
(2)求MN與面SAB所成的角.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,在直角梯形ABCP中,AP∥BC,AB⊥AP,AB=BC=3,AP=7,CD⊥AP,現將△PCD沿折線CD折成直二面角P-CD-A,設E,F分別是PD,BC的中點.
(Ⅰ)求證:EF∥平面PAB;
(Ⅱ)求直線BE與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•藍山縣模擬)如圖所示,在直角梯形ABCD中,∠A=90°,∠C=45°,AB=2,AD=1,E是AB中點,F是DC上的點,且EF∥AD,現以EF為折痕將四邊形AEFD向上折起,使平面AEFD垂直平面EBCF,連AC,DC,BA,BD,BF,

(1)求證:CB⊥平面DFB;
(2)求二面角B-AC-D的余弦值.

查看答案和解析>>

同步練習冊答案