【題目】數(shù)列滿足:對(duì)一切,有,其中是與無關(guān)的常數(shù),稱數(shù)列上有界(有上界),并稱是它的一個(gè)上界,對(duì)一切,有,其中是與無關(guān)的常數(shù),稱數(shù)列下有界(有下界),并稱是它的一個(gè)下界.一個(gè)數(shù)列既有上界又有下界,則稱為有界數(shù)列,常值數(shù)列是一個(gè)特殊的有界數(shù)列.設(shè),數(shù)列滿足,.

1)若數(shù)列為常數(shù)列,試求實(shí)數(shù)、滿足的等式關(guān)系,并求出實(shí)數(shù)的取值范圍;

2)下面四個(gè)選項(xiàng),對(duì)一切實(shí)數(shù),恒正確的是.(寫出所有正確選項(xiàng),不需要證明其正確,但需要簡單說明一下為什么不選余下幾個(gè))

A. 當(dāng)時(shí), B. 當(dāng)時(shí),

C. 當(dāng)時(shí), D. 當(dāng)時(shí),

3)若,,且數(shù)列是有界數(shù)列,求的值及的取值范圍.

【答案】1;(2B;(3.

【解析】

1)利用列方程,根據(jù)方程有實(shí)數(shù)根,求得的取值范圍.

2)利用(1)的結(jié)論,判斷出錯(cuò)誤選項(xiàng),由此得出正確選項(xiàng).

3)對(duì)分成兩種情況進(jìn)行分類討論,根據(jù)的上界和下界,列不等式,由此求得的值和的取值范圍.

1)由于數(shù)列為常數(shù)列,所以,故,即,此方程有實(shí)數(shù)根,故,解得,即實(shí)數(shù)的取值范圍是.

2)由(1)可知,當(dāng)數(shù)列為常數(shù)列時(shí),實(shí)數(shù)的取值范圍是,此時(shí)的值與有關(guān),不一定大于,故ACD三個(gè)選項(xiàng)不正確,B選項(xiàng)正確.

3 依題意,大前提為:,

①當(dāng)為常數(shù)列時(shí),由(1)知,所以,.

②當(dāng)不是常數(shù)列時(shí),由于,,故數(shù)列是單調(diào)遞增數(shù)列.最小值為,設(shè)對(duì)一切,有,故.

i)當(dāng)時(shí),,所以,即,故,由于成立,故③成立.由④得,即存在實(shí)數(shù)使上式成立,故,而本題大前提是,所以.此時(shí),所以.所以,即.

ii)當(dāng)時(shí),,故.

,則,,即,則,,其判別式,故不存在使成立.

所以,此時(shí),,即,故,⑤恒成立.對(duì)于⑥,由④的分析可知,,.所以,解得.

綜上所述,,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四棱錐的底面是正方形,垂直于底面,已知四棱錐的正視圖,如圖2所示.

I)若M的中點(diǎn),證明:平面;

II)求棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將的圖象上的所有的點(diǎn)(

A.向左平移個(gè)長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

B.向左平移個(gè)長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>2,縱坐標(biāo)不變

C.向左平移個(gè)長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

D.向左平移個(gè)長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>2,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】焦點(diǎn)在x軸上的橢圓C經(jīng)過點(diǎn),橢圓C的離心率為,是橢圓的左、右焦點(diǎn),P為橢圓上任意點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若點(diǎn)M的中點(diǎn)(O為坐標(biāo)原點(diǎn)),過M且平行于OP的直線l交橢圓CA,B兩點(diǎn),是否存在實(shí)數(shù),使得;若存在,請(qǐng)求出的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,某小區(qū)中有條長為50,寬為6.5米的道路ABCD,在路的一側(cè)可以停放汽車,已知小型汽車的停車位是一個(gè)2.5米寬,5米長的矩形,GHPQ,這樣該段道路可以劃岀10個(gè)車位,隨著小區(qū)居民汽車擁有量的增加,停車難成為普遍現(xiàn)象.經(jīng)過各方協(xié)商,小區(qū)物業(yè)擬壓縮綠化,拓寬道路,改變車位方向增加停車位,如圖2,改建后的通行寬度保持不變,GAD的距離不變.

(1)綠化被壓縮的寬度BE與停車位的角度∠HPE有關(guān),為停車方便,要求,寫出關(guān)于的函數(shù)表達(dá)式;

(2)沿用(1)的條件和記號(hào),實(shí)際施工時(shí),BE=3,問改造后的停車位增加了多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的離心率是,過點(diǎn)做斜率為的直線,橢圓與直線交于兩點(diǎn),當(dāng)直線垂直于軸時(shí)

(Ⅰ)求橢圓的方程;

(Ⅱ)當(dāng)變化時(shí),在軸上是否存在點(diǎn),使得是以為底的等腰三角形,若存在求出的取值范圍,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求曲線處的切線方程;

2)討論的單調(diào)性;

3)設(shè)、為曲線上的任意兩點(diǎn),并且,若恒成立,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

(1) ,求函數(shù)的單調(diào)區(qū)間;

(2) 若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,橢圓 的長軸長為4,離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過右焦點(diǎn)作一條不與坐標(biāo)軸平行的直線,若交橢圓、兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,求的面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案