分析:先求原函數(shù)的定義域,再將原函數(shù)分解成兩個簡單函數(shù)y=log2z、z=1-x2,因為y=log2z單調(diào)遞增,所以要求原函數(shù)的單調(diào)遞增區(qū)間即要求z=1-x2的增區(qū)間(根據(jù)同增異減的性質(zhì)),再由定義域即可得到答案.
解答:解:∵函數(shù)y=log2(1-x2)有意義∴1-x2>0?(x+1)(x-1)<0?-1<x<1
∵2>1∴函數(shù)y=log2(1-x2)的單調(diào)遞減區(qū)間就是g(x)=1-x2的單調(diào)遞減區(qū)間.
對于y=g(x)=1-x2,開口向下,對稱軸為x=0,
∴g(x)=1-x2的單調(diào)遞增區(qū)間是(-∞,0).
∵-1<x<1,∴函數(shù)y=log2(1-x2)的單調(diào)遞增區(qū)間是 (-1,0)
故答案為:(-1,0).
點評:本題主要考查復(fù)合函數(shù)單調(diào)性的問題.求復(fù)合函數(shù)單調(diào)性時注意同增異減的性質(zhì)即可.