設(shè)二次函數(shù)在區(qū)間上的最大值、最小值分別是,集合.
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,記,求的最小值.
(Ⅰ),;(Ⅱ).
解析試題分析:(Ⅰ)由方程的根求出函數(shù)解析式,再利用函數(shù)的單調(diào)性求出最值;(Ⅱ)由方程有兩相等實(shí)根1,求出的關(guān)系式,消去得到含有參數(shù)函數(shù)解析式,進(jìn)一步求出,再由的單調(diào)性求出最小值.
試題解析:(Ⅰ)由,可知 1分
又,故1和2是方程的兩實(shí)根,所以
3分 解得, 4分
所以,
當(dāng)時,即 5分
當(dāng)時,即 6分
(Ⅱ)由題意知方程有兩相等實(shí)根1,所以
,即, 8分
所以,
其對稱軸方程為,
又,故 9分
所以, 10分
11分
14分
又在單調(diào)遞增,所以當(dāng)時, 16分
考點(diǎn):二次函數(shù)的解析式、二次函數(shù)在閉區(qū)間上的最值,函數(shù)的單調(diào)性.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是奇函數(shù),并且函數(shù)的圖像經(jīng)過點(diǎn)(1,3),(1)求實(shí)數(shù)的值;(2)求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),是否存在實(shí)數(shù)a、b、c,使同時滿足下列三個條件:(1)定義域?yàn)镽的奇函數(shù);(2)在上是增函數(shù);(3)最大值是1.若存在,求出a、b、c;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ee/2/1bd0c3.png" style="vertical-align:middle;" />
(1)求的值;
(2)若函數(shù)在區(qū)間上是單調(diào)遞減函數(shù),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/16/d/knnds1.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中
(1)對于函數(shù),當(dāng)時,,求實(shí)數(shù)的取值集合;
(2)當(dāng)時,的值為負(fù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中e為自然對數(shù)的底數(shù),且當(dāng)x>0時恒成立.
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)求實(shí)數(shù)a的所有可能取值的集合;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)對于任意實(shí)數(shù)x,不等式|x+7|+|x-1|≥m恒成立.
(1)求m的取值范圍;
(2)當(dāng)m取最大值時,解關(guān)于x的不等式|x-3|-2x≤2m-12.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com