已知函數(shù),,的定義域為
(1)求的值;
(2)若函數(shù)在區(qū)間上是單調(diào)遞減函數(shù),求實數(shù)的取值范圍。
(1);(2).
解析試題分析:(1)得,易得;(2)函數(shù)在區(qū)間上是單調(diào)遞減函數(shù),則可由減函數(shù)的定義得到不等式恒成立,求出的取值范圍,或由函數(shù)的導函數(shù)在恒成立求出的取值范圍.
試題解析:(1)由得,所以,即;
(2)解法一:由(1)知
設,因為在區(qū)間上是單調(diào)減函數(shù)
所以恒成立,即恒成立,由于,所以實數(shù)的取值范圍是
解法二:由(1)知,因為在區(qū)間上是單調(diào)減函數(shù),
所以有在恒成立,即在恒成立,所以所以實數(shù)的取值范圍是
考點:函數(shù)的單調(diào)性,恒成立問題.
科目:高中數(shù)學 來源: 題型:解答題
已知定義域為的函數(shù)是奇函數(shù).
(Ⅰ)求值;
(Ⅱ)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(Ⅲ)設關(guān)于的函數(shù)有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知二次函數(shù),滿足,且方程有兩個相等的實根.
(1)求函數(shù)的解析式;
(2)當時,求函數(shù)的最小值的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),.
(Ⅰ)若,求函數(shù)在區(qū)間上的最值;
(Ⅱ)若恒成立,求的取值范圍. (注:是自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
若定義在上的函數(shù)同時滿足:①;②;③若,且,則成立.則稱函數(shù)為“夢函數(shù)”.
(1)試驗證在區(qū)間上是否為“夢函數(shù)”;
(2)若函數(shù)為“夢函數(shù)”,求的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com