已知函數(shù)f(x)=x3+ax2+bx+c,當(dāng)x=-1,f(x)有極大值7;當(dāng)x=3時(shí),f(x)有極小值.
(Ⅰ)求a,b,c的值.
(Ⅱ)設(shè)g(x)=f(x)-ax2,求g(x)的單調(diào)區(qū)間.
分析:(Ⅰ)f'(x)=3x2+2ax+b,由題意得
f(-1)=7
f′(-1)=0
f′(3)=0
,由此能求出a,b,c的值.
(Ⅱ)、由(Ⅰ)得g(x)=x3-9x+2,于是g'(x)=3x2-9,由此能求出函數(shù)g(x)的單調(diào)遞減區(qū)間.
解答:(本小題滿分13分)
解:(Ⅰ)f'(x)=3x2+2ax+b
由題意得,
f(-1)=7
f′(-1)=0
f′(3)=0

-1+a-b+c=7
3-2a+b=0
27+6a+b=0
,
解得a=-3,b=-9,c=2
(Ⅱ)由(Ⅰ)得g(x)=f(x)-ax2=x3-3x2-9x+2+3x2=x3-9x+2,
∴g'(x)=3x2-9,
當(dāng)g'(x)>0時(shí),
3x2-9>0⇒x<-
3
x>
3
,
所以函數(shù)g(x)的單調(diào)遞增區(qū)間是(-∞,-
3
)
(
3
,+∞)

當(dāng)g'(x)<0時(shí),
3x2-9<0⇒-
3
<x<
3

所以函數(shù)g(x)的單調(diào)遞減區(qū)間是(-
3
,
3
)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的應(yīng)用,考查函數(shù)的單調(diào)區(qū)間的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案