14、數(shù)列{an}中,已知a1=1,當(dāng)n≥2時,an-an-1=2n-1,依次計算a2,a3,a4后,猜想an的表達(dá)式是
n2
分析:先根據(jù)數(shù)列的遞推關(guān)系式求出a2、a3、a4的值,即可得到答案.
解答:解析:計算出a1=1,a2=4,a3=9,a4=16.
可猜想an=n2
故答案為:n2
點(diǎn)評:本題主要考查歸納推理,主要考查了數(shù)列遞推關(guān)系式的應(yīng)用.屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文科)(1)若數(shù)列{an1}是數(shù)列{an}的子數(shù)列,試判斷n1與l的大小關(guān)系;
(2)①在數(shù)列{an}中,已知{an}是一個公差不為零的等差數(shù)列,a5=6.當(dāng)a3=2時,若存在自然數(shù)n1,n2,…,nl,…滿足5<n1<n2<…<nl<…且a3,a5,a7,a9…an…是等比數(shù)列,試用t表示n1;
②若存在自然數(shù)n1,n2,…,nl,…滿足5<n1<n2<…<nl<…且a3,a5,a7,a9…an…構(gòu)成一個等比數(shù)列.求證:當(dāng)a3是整數(shù)時,a3必為12的正約數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在各項(xiàng)均為正數(shù)的數(shù)列{an}中,已知點(diǎn)(an,an+1)(n∈N*)在函數(shù)y=2x的圖象上,且a25=8
(1)求證:數(shù)列{an}是等比數(shù)列,并求出其通項(xiàng)公式;
(2)若數(shù)列{bn}的前n項(xiàng)和為Sn,且bn=an+n,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=2,a2=3,當(dāng)n≥2時,an+1是an•an-1的個位數(shù),則a2011=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=1,an+1=2an+2(n∈N*
(Ⅰ)求證:數(shù)列{an+2}是等比數(shù)列;
(Ⅱ) 求數(shù)列{an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=1,a2=5,an+2=an+1-an(n∈N*),則a2011=(  )

查看答案和解析>>

同步練習(xí)冊答案