A. | [${\frac{1}{2}$,2) | B. | [1,4] | C. | [${\frac{1}{4}$,4) | D. | [${\frac{1}{2}$,4) |
分析 由已知寫出分段函數(shù)g(x),求出兩段函數(shù)的零點,由每一段函數(shù)的零點在其定義域內(nèi)列不等式組求得a的范圍,進(jìn)一步得到z=2a的取值范圍.
解答 解:由f(x)=$\left\{\begin{array}{l}{x+2,x>a}\\{{x}^{2}+5x+2,x≤a}\end{array}\right.$,得
g(x)=f(x)-2x=$\left\{\begin{array}{l}{-x+2,x>a}\\{{x}^{2}+3x+2,x≤a}\end{array}\right.$,
而方程-x+2=0的解為2,方程x2+3x+2=0的解為-1或-2,
∴$\left\{\begin{array}{l}a<2\\-1≤a\\-2≤a\end{array}\right.$,解得-1≤a≤2,
∴z=2a的取值范圍是$[{\frac{1}{2},4})$.
故選:D.
點評 本題考查函數(shù)零點判定定理,考查分段函數(shù)的應(yīng)用,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,$\frac{3}{2}$) | B. | [-$\frac{1}{2}$,$\frac{3}{2}$] | C. | (-$\frac{3}{2}$,$\frac{1}{2}$) | D. | [-$\frac{3}{2}$,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{17}$ | B. | $\frac{9}{19}$ | C. | $\frac{10}{21}$ | D. | $\frac{11}{23}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com