3.已知集合A={1,2},B={x|x=a+b,a∈A,b∈A},則集合B中元素個數(shù)為( 。
A.1B.2C.3D.4

分析 由已知條件求出集合B,由此能求出集合B中元素個數(shù).

解答 解:∵集合A={1,2},B={x|x=a+b,a∈A,b∈A},
∴B={2,3,4},
∴集合B中元素個數(shù)為3.
故選:C.

點評 本題考查集合中元素個數(shù)的求法,是基礎(chǔ)題,解題時要認真審題,注意元素與集合的關(guān)系的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,離心率為$\frac{\sqrt{3}}{3}$,點M在橢圓上,且滿足MF2⊥x軸,|MF1|=$\frac{4\sqrt{3}}{3}$.
(1)求橢圓的方程;
(2)過F1,F(xiàn)2分別作互相垂直的兩直線與橢圓C分別交于D、E、M、N四點,試求四邊形DMEN面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}滿足${a_n}+{a_{n+1}}=\frac{1}{2}({n∈{N^*}})$,其前n項和為Sn,a2=2,則S21=( 。
A.5B.$\frac{7}{2}$C.$\frac{9}{2}$D.$\frac{13}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.$f(x)=\sqrt{3}sinx-cosx$,求:
(1)求周期、振幅;
(2)求[0,π]在區(qū)間[0,π]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的導(dǎo)函數(shù).
(1)g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求g1(x),g2(x),g3(x),并猜想gn(x)的表達式(不必證明);
(2)若f(x)≥ag(x)恒成立,求實數(shù)a的取值范圍;
(3)設(shè)n∈N+,比較g(1)+g(2)+…+g(n)與n-f(n)的大小,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如果${(2x+\sqrt{3})^{21}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{21}}{x^{21}}$,那么${({a_1}+{a_3}+{a_5}+…+{a_{21}})^2}-$${({a_0}+{a_2}+{a_4}+…+{a_0})^2}$=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知A,B兩地的距離是120km,按交通法規(guī)規(guī)定,A,B兩地之間的公路車速應(yīng)限制在50~100km/h,假設(shè)汽油的價格是6元/升,以xkm/h速度行駛時,汽車的耗油率為$(4+\frac{x^2}{360})L/h$,司機每小時的工資是36元,那么最經(jīng)濟的車速是多少?如果不考慮其他費用,這次行車的總費用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{a•{2}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,若關(guān)于x的方程f(f(x))=0有且只有一個實數(shù)解,則實數(shù)a的取值范圍是( 。
A.(-∞,0)B.(-∞,0]∪(0,1)C.(-∞,0)∪(0,1]D.(-∞,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,若輸入n=10,則輸出k的值為( 。
A.7B.6C.5D.4

查看答案和解析>>

同步練習(xí)冊答案