8.如果${(2x+\sqrt{3})^{21}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{21}}{x^{21}}$,那么${({a_1}+{a_3}+{a_5}+…+{a_{21}})^2}-$${({a_0}+{a_2}+{a_4}+…+{a_0})^2}$=( 。
A.1B.-1C.2D.-2

分析 在所給的等式中,分別令x=1、x=-1,可得2個式子,再把這2個式子相乘、變形可得要求式子的值.

解答 解:∵${(2x+\sqrt{3})^{21}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{21}}{x^{21}}$,
∴令x=1,可得a0+a1+a2+a3+…+a21=${(2+\sqrt{3})}^{21}$  ①,
令x=-1,可得得a0-a1+a2-a3+…+a21=${(-2+\sqrt{3})}^{21}$ ②,
①乘以②可得 ${({a_0}+{a_2}+{a_4}+…+{a_0})^2}$-${{(a}_{1}{+a}_{3}+…{+a}_{21})}^{2}$=-1,
那么${({a_1}+{a_3}+{a_5}+…+{a_{21}})^2}-$${({a_0}+{a_2}+{a_4}+…+{a_0})^2}$=1,
故選:A.

點評 本題主要考查二項式定理的應(yīng)用,是給變量賦值的問題,關(guān)鍵是根據(jù)要求的結(jié)果,選擇合適的數(shù)值代入,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.拋擲一枚骰子(六個面上分別標以數(shù)字1,2,3,4,5,6),
求:(1)連續(xù)拋擲2次,求向上的數(shù)不同的概率;
(2)連續(xù)拋擲2次,求向上的數(shù)之和為6的概率;
(3)連續(xù)拋擲5次,求恰好出現(xiàn)3次向上的數(shù)為奇數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項和為Sn,${a_1}=-\frac{1}{2},2{S_{n+1}}={S_n}-1({n∈{N^*}})$
(I)求證:數(shù)列{Sn+1}是等比數(shù)列
(II)求數(shù)列{(1-2n)an}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.單個蜂巢可以近似地看作是一個正六邊形,如圖為一組蜂巢的截面圖.其中第一個圖有1個蜂巢,第二個圖有7個蜂巢,第三個圖有19個蜂巢,按此規(guī)律,以f(n)表示第n幅圖的蜂巢總數(shù).則f(4)=________;f(n)=________( 。
A.37 3n2-3n+1B.38 3n2-3n+2C.36 3n2-3nD.35 3n2-3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={1,2},B={x|x=a+b,a∈A,b∈A},則集合B中元素個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.復(fù)數(shù)${z_1}=a+5+(10-{a^2})i$,z2=1-2a+(2a-5)i,其中a∈R.
(1)若a=-2,求z1的模;
(2)若$\overline{z_1}+{z_2}$是實數(shù),求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)向量$\vec a=({cos{{45}°},sin4{5°}})$,$\vec b=({cos{{15}°},sin{{15}°}})$,$\vec a•\vec b$=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ex
(Ⅰ)求曲線f(x)過O(0,0)的切線l方程;
(Ⅱ)求曲線f(x)與直線x=0,x=1及x軸所圍圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知λ∈R,向量$\overrightarrow a=({3,λ})\;,\;\overrightarrow b=({λ-1\;,\;2})$,則“λ=3”是“$\overrightarrow a∥\overrightarrow b$”的( 。
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.即不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案