設數(shù)列{an}的前n項和為Sn,對任意的正整數(shù)n,都有an=3Sn+1成立.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)記數(shù)學公式,求數(shù)列{bn}的前n項和為Tn

解:(1)當n=1時,a1=3S1+1,∴
又∵an=3Sn+1,an+1=3Sn+1+1,
,∴
(2),
.…①
.…②
①-②得:,
=
=
分析:(1)當n=1時,由a1=3S1+1求出,又an=3Sn+1,an+1=3Sn+1+1,相減可得,從而求得數(shù)列{an}的通項公式.
(2)先依據(jù)題意求出,再利用錯位相減法求數(shù)列的前n項和.
點評:本題主要考查數(shù)列的前n項和與第n項之間的關系,用錯位相減法求數(shù)列的前n項和,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項公式;
(2)設bn=an(2n-1),求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列an的前n項的和為Sn,a1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求數(shù)列an的通項公式;
(3)設bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關系式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域為Dn,若Dn內(nèi)的整點(整點即橫坐標和縱坐標均為整數(shù)的點)個數(shù)為an(n∈N*
(1)寫出an+1與an的關系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項公式;
(3)設數(shù)列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鄭州一模)設數(shù)列{an}的前n項和Sn=2n-1,則
S4
a3
的值為(  )

查看答案和解析>>

同步練習冊答案