精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

1)討論的單調性;

2)若在定義域內是增函數,且存在不相等的正實數,使得,證明:.

【答案】1)當時,上遞增,在上遞減;

時,上遞增,在上遞減,在上遞增;

時,上遞增;

時,上遞增,在上遞減,在上遞增;

2)證明見解析

【解析】

1)對求導,分,進行討論,可得的單調性;

2在定義域內是是增函數,由(1)可知,,設,可得,則,設,對求導,利用其單調性可證明.

解:的定義域為

因為,

所以,

時,令,得,令,得

時,則,令,得,或,

,得

時,,

時,則,令,得;

綜上所述,當時,上遞增,在上遞減;

時,上遞增,在上遞減,在上遞增;

時,上遞增;

時,上遞增,在上遞減,在上遞增;

2在定義域內是是增函數,由(1)可知,

此時,設,

又因為,則,

,則

對于任意成立,

所以上是增函數,

所以對于,有,

,有,

因為,所以,

,又遞增,

所以,即.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四邊形是正方形,四邊形為矩形,的中點.

1)求證:平面

2)二面角的大小可以為嗎?若可以求出此時的值,若不可以,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖在三棱柱中,邊的中點..

1)證明:平面

2)若,中點且,,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知圓C,橢圓E)的右頂點A在圓C上,右準線與圓C相切.

1)求橢圓E的方程;

2)設過點A的直線l與圓C相交于另一點M,與橢圓E相交于另一點N.時,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓的長軸長為,點、為橢圓上的三個點,為橢圓的右端點,過中心,且,

1)求橢圓的標準方程;

2)設是橢圓上位于直線同側的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關系,并求證直線的斜率為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數上的最大值為.

(1)求a的值;

(2)求在區(qū)間上的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

在極坐標系中,O為極點,點在曲線上,直線l過點且與垂直,垂足為P.

1)當時,求l的極坐標方程;

2)當MC上運動且P在線段OM上時,求P點軌跡的極坐標方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,函數,其中,的一個極值點,且.

1)討論的單調性

2)求實數a的值

3)證明

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面是菱形,且,其對角線、交于點 、是棱上的中點.

(1)求證:面;

(2)若面底面, , ,求三棱錐的體積.

查看答案和解析>>

同步練習冊答案