【題目】如圖,四棱錐的底面是菱形,且,其對(duì)角線、交于點(diǎn), 、是棱、上的中點(diǎn).
(1)求證:面面;
(2)若面底面, , , ,求三棱錐的體積.
【答案】(1)見解析;(2)
【解析】試題分析:
(1)由是菱形可得,又,所以,于是可得平面;又由可得平面,從而可得平面面.(2)在中由余弦定理可得,于是,可得.根據(jù)題意可得點(diǎn)到面的距離即為點(diǎn)到的距離,且為,又根據(jù)題意得點(diǎn)到面的距離為點(diǎn)到面的距離的一半,可得.
試題解析:
(1)證明:因?yàn)榈酌?/span>是菱形,
所以是的中點(diǎn),且,
又、是棱、上的中點(diǎn),
所以,
所以,
又 面, 面,
所以平面.
又在中, ,且 面, 面,
所以平面,
又,
所以平面面.
(2)解:在中, ,
所以,
由(1)知, ,
所以,
所以,
因?yàn)槠矫?/span>底面,平面 底面,
所以點(diǎn)到面的距離即為點(diǎn)到的距離.
又在菱形中, , ,
所以點(diǎn)到的距離為,
因?yàn)?/span>、、是、、的中點(diǎn),平面面,
所以點(diǎn)到面的距離為點(diǎn)到面的距離的一半,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令.求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,貨輪在海上B處,以50海里/時(shí)的速度沿方位角(從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的水平角)為155o的方向航行,為了確定船位,在B點(diǎn)處觀測(cè)到燈塔A的方位角為125o.半小時(shí)后,貨輪到達(dá)C點(diǎn)處,觀測(cè)到燈塔A的方位角為80o.求此時(shí)貨輪與燈塔之間的距離(答案保留最簡(jiǎn)根號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列敘述錯(cuò)誤的是( )
A.已知直線和平面,若點(diǎn),點(diǎn)且,,則
B.若三條直線兩兩相交,則三條直線確定一個(gè)平面
C.若直線不平行于平面,且,則內(nèi)的所有直線與都不相交
D.若直線和不平行,且,,,則l至少與,中的一條相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率是40%.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定l,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下10組隨機(jī)數(shù):907 966 191 925 271 431 932 458 569 683.
據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為,且有,則不等式 的解集為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測(cè)量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88,若樣本B數(shù)據(jù)恰好是樣本A數(shù)據(jù)都加上2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是( )
A. 眾數(shù) B. 平均數(shù)
C. 中位數(shù) D. 標(biāo)準(zhǔn)差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)為,離心率為.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓的右頂點(diǎn),過點(diǎn)的直線與橢圓交于, 兩點(diǎn),直線, 與直線分別交于, 兩點(diǎn).求證:點(diǎn)在以為直徑的圓上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com