(2013•黑龍江二模)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|x+1|+|x-a|(a>0)
(Ⅰ)若a=2時(shí),解不等式f(x)≤4;
(Ⅱ)若不等式f(x)≤4的對(duì)一切x∈[a,2]恒成立,求實(shí)數(shù)a的取值范圍.
分析:(Ⅰ)不等式f(x)≤4 即|x+1|+|x-2|≤4,再由絕對(duì)值的意義求得不等式f(x)≤4的解集.
(Ⅱ)當(dāng)x∈[a,2],不等式即 x+1+x-a≤4,解得 a≥2x-3,求得2x-3的最大值為2×2-3=1,可得a≥1,從而得到 1≤a≤2.
解答:解:(Ⅰ)由于函數(shù)f(x)=|x+1|+|x-a|(a>0),若a=2時(shí),則不等式f(x)≤4 即|x+1|+|x-2|≤4.
而由絕對(duì)值的意義可得|x+1|+|x-2|表示數(shù)軸上的x對(duì)應(yīng)點(diǎn)到-2和2對(duì)應(yīng)點(diǎn)的距離之和,而-
3
2
5
2
應(yīng)點(diǎn)到-2和2對(duì)應(yīng)點(diǎn)的距離之和正好等于4,
故不等式f(x)≤4的解集為[-
3
2
,
5
2
].
(Ⅱ)當(dāng)x∈[a,2],不等式即 x+1+x-a≤4,解得 a≥2x-3.由于2x-3的最大值為2×2-3=1,∴a≥1,
故 1≤a≤2,實(shí)數(shù)a的取值范圍為[1,2].
點(diǎn)評(píng):本題主要考查絕對(duì)值的意義,絕對(duì)值不等式的解法,函數(shù)的恒成立問題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黑龍江二模)某幾何體的三視圖 (單位:cm) 如圖所示,則此幾何體的體積是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黑龍江二模)求“方程(
3
5
x+(
4
5
x=1的解”有如下解題思路:設(shè)f(x)=(
3
5
x+(
4
5
x,則f(x)在R上單調(diào)遞減,且f(2)=1,所以原方程有唯一解x=2.類比上述解題思路,方程x6+x2=(x+2)3+(x+2)的解集為
{-1,2}
{-1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黑龍江二模)如圖,在四棱錐P-ABCD中,側(cè)棱PA丄底面ABCD底面ABCD為矩形,E為PD上一點(diǎn),AD=2AB=2AP=2,PE=2DE.
(I)若F為PE的中點(diǎn),求證BF∥平面ACE;
(Ⅱ)求三棱錐P-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黑龍江二模)已知函數(shù)f(x)=lnx,x1,x2∈(0,
1
e
),且x1<x2,則下列結(jié)論中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黑龍江二模)復(fù)平面內(nèi),表示復(fù)故
1+i
2-i
(其中i為虛數(shù)單位)的點(diǎn)位于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案