實數(shù)x,y滿足不等式組數(shù)學(xué)公式,那么目標(biāo)函數(shù)z=2x+4y的最小值是


  1. A.
    -15
  2. B.
    -6
  3. C.
    -5
  4. D.
    -2
B
分析:根據(jù)已知的約束條件畫出滿足約束條件的可行域,再用角點法,求出目標(biāo)函數(shù)的最大值.
解答:解:約束條件對應(yīng)的平面區(qū)域如下圖示:
當(dāng)直線z=2x+4y過(3,-3)時,Z取得最小值-6.
故選B.
點評:本題考查的知識點是線性規(guī)劃,正確畫出可行域,判斷目標(biāo)函數(shù)的最優(yōu)解是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足不等式組
x+3y-3≥0
2x-y-3≤0
x-my+1≥0
且x+y的最大值為9,則實數(shù)m=(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實數(shù)x,y滿足不等式組
x-y+5≥0
x+y≥0
x≤3
,那么目標(biāo)函數(shù)z=2x+4y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實數(shù)x,y滿足不等式組
|x|≤3
-3≤y≤2
x+y≥a
,若在平面直角坐標(biāo)系中,由點(x,y)構(gòu)成的區(qū)域的面積是22,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•汕頭一模)實數(shù)x,y滿足不等式組
2x-y≥0
x+y-2≥0
6x+3y≤18
,且z=ax+y(a>0)取得最小值的最優(yōu)解有無窮多個,則實數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足不等式組
x-2y+1≥0
|x|-y-1≤0
,則x2+y2-6x+9的取值范圍是
[2,16]
[2,16]

查看答案和解析>>

同步練習(xí)冊答案