【題目】如圖,在四棱錐中,底面,,,點是棱的中點.

1)求證:平面;

2)求二面角的大小.

【答案】1)見解析(2

【解析】

1)取的中點,連接、,證明四邊形為平行四邊形,即可證明平面.

2)以為坐標原點,,所在的直線分別為軸、軸、軸建立如圖所示的空間直角坐標系,求出平面的一個法向量,取平面的一個法向量為,結合空間向量數(shù)量積運算即可得解.

證明:(1)如圖,取的中點,連接、.

的中點,∴,

,,所以,

∴四邊形為平行四邊形,

,

平面,平面,

平面.

2)在平面內(nèi)過點的垂線,由題意知,兩兩垂直,以

為坐標原點,,,所在的直線分別為軸、軸、軸建立如圖所示的空

間直角坐標系,由題意知,

可得,,∴,,

設平面的法向量為,

則由,即,令,則,,

為平面的一個法向量.

底面,∴可取平面的一個法向量為,

,

∵二面角為銳二面角,

∴二面角的大小為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知

)當時,判斷在定義域上的單調(diào)性;

)若上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的右焦點為,過焦點,斜率為的直線交橢圓于兩點(異于長軸端點),是直線上的動點.

1)若直線平分線段,求證:

2)若直線的斜率,直線、、的斜率成等差數(shù)列,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費和年銷售量)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

46.6

563

6.8

289.8

1.6

1.469

108.8

表中,

1)根據(jù)散點圖判斷,哪一個適宜作為年銷售量y關于年宣傳費x的回歸方程類型?給出判斷即可,不必說明理由

2)根據(jù)(1)的判斷結果及表中數(shù)據(jù),建立y關于x的回歸方程;

3)已知這種產(chǎn)品的年利潤zx、y的關系為根據(jù)(2)的結果回答下列問題:

①年宣傳費時,年銷售量及年利潤的預報值是多少?

②年宣傳費x為何值時,年利潤的預報值最大?

附:對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】英國脫歐這件國際大事引起了社公各界廣泛關注,根據(jù)最新情況,英國大選之后,預計將會在2020日年131日完成脫歐,但是因為之前脫歐一直被延時,所以很多人認為并不能如期完成,某媒體隨機在人群中抽取了100人做調(diào)查,其中40歲以下的人群認為能完成的占,而40歲以上的有10人認為不能完成

1)完成列聯(lián)表,并回答能否有90%的把握認為預測國際大事的準確率與年齡有關?

能完成

不能完成

合計

40歲以上

55

40歲以下

合計

2)現(xiàn)按照分層抽樣抽取20人,在這20人的樣本中,再選取40歲以下的4人做深度調(diào)查,至少有2人認為英國能夠完成脫歐的概率為多少?

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為迎接2022年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結束后對學生進行了考核.記表示學生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如下莖葉圖:

(Ⅰ)從參加培訓的學生中隨機選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學生考核優(yōu)秀的概率;

(Ⅱ)從圖中考核成績滿足的學生中任取2人,求至少有一人考核優(yōu)秀的概率;

(Ⅲ)記表示學生的考核成績在區(qū)間的概率,根據(jù)以往培訓數(shù)據(jù),規(guī)定當時培訓有效.請根據(jù)圖中數(shù)據(jù),判斷此次中學生冰雪培訓活動是否有效,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),),

1)討論函數(shù)的單調(diào)區(qū)間;

2)若當的圖象總在函數(shù)的圖象的下方,求正實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的離心率為,與坐標軸分別交于A,B兩點,且經(jīng)過點Q,1).

)求橢圓C的標準方程;

)若Pmn)為橢圓C外一動點,過點P作橢圓C的兩條互相垂直的切線l1、l2,求動點P的軌跡方程,并求ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為加強對銷售員的考核與管理,從銷售部門隨機抽取了2019年度某一銷售小組的月均銷售額,該小組各組員2019年度的月均銷售額(單位:萬元)分別為:3.35,3.353.38,3.41,3.433.44,3.46,3.48,3.51,3.54,3.56,3.563.57,3.593.60,3.64,3.643.67,3.70,3.70.

(Ⅰ)根據(jù)公司人力資源部門的要求,若月均銷售額超過3.52萬元的組員不低于全組人數(shù)的,則對該銷售小組給予獎勵,否則不予獎勵.試判斷該公司是否需要對抽取的銷售小組發(fā)放獎勵;

(Ⅱ)在該銷售小組中,已知月均銷售額最高的5名銷售員中有1名的月均銷售額造假.為找出月均銷售額造假的組員,現(xiàn)決定請專業(yè)機構對這5名銷售員的月均銷售額逐一進行審核,直到能確定出造假組員為止.設審核次數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案