【題目】如圖,橢圓的右焦點(diǎn)為,過焦點(diǎn),斜率為的直線交橢圓于、兩點(diǎn)(異于長軸端點(diǎn)),是直線上的動(dòng)點(diǎn).
(1)若直線平分線段,求證:.
(2)若直線的斜率,直線、、的斜率成等差數(shù)列,求實(shí)數(shù)的取值范圍.
【答案】(1)證明見解析;(2).
【解析】
(1)利用點(diǎn)差法可證得結(jié)論成立;
(2)令,可得直線的方程為,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,利用直線、、的斜率成等差數(shù)列,可得出關(guān)于的等式,然后利用函數(shù)的基本性質(zhì)可求得實(shí)數(shù)的取值范圍.
(1)設(shè)、,線段的中點(diǎn),由題意可得,
上述兩式相減得,可得,
,,則,
因此,;
(2)由,令,則直線的方程為,
由得,恒成立,
由韋達(dá)定理得,,
因?yàn)橹本、、的斜率成等差數(shù)列,
所以,,
,
,
,即,
,,
由雙勾函數(shù)的單調(diào)性可知,函數(shù)在區(qū)間上單調(diào)遞增,
當(dāng)時(shí),,所以,.
因此,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知參加某項(xiàng)活動(dòng)的六名成員排成一排合影留念,且甲乙兩人均在丙領(lǐng)導(dǎo)人的同側(cè),則不同的排法共有( )
A. 240種 B. 360種 C. 480種 D. 600種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓:的右頂點(diǎn)與拋物線:的焦點(diǎn)重合,其離心率.過作兩條相互垂直的直線與,且交拋物線于,兩點(diǎn),交橢圓于另一點(diǎn).
(1)求的值;
(2)求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)樓頂成一種“楔體”形狀,該“楔體”兩端成對(duì)稱結(jié)構(gòu),其內(nèi)部為鋼架結(jié)構(gòu)(未畫出全部鋼架,如圖1所示,俯視圖如圖2所示),底面是矩形,米,米,屋脊到底面的距離即楔體的高為1.5米,鋼架所在的平面與垂直且與底面的交線為,米,為立柱且O是的中點(diǎn).
(1)求斜梁與底面所成角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)求此模體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),點(diǎn)是圓:上任意一點(diǎn),線段的垂直平分線交于點(diǎn),點(diǎn)的軌跡記為曲線.
(1)求曲線的方程;
(2)過的直線交曲線于不同的,兩點(diǎn),交軸于點(diǎn),已知,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(1)若a=1,且f(x)≥m在(0,+∞)恒成立,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)時(shí),若x=0不是f(x)的極值點(diǎn),求實(shí)數(shù)a的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A是△ABC的一個(gè)內(nèi)角,且sinA+cosA=a,其中a∈(0,1),則關(guān)于tanA的值,以下答案中,可能正確的是( )
A.﹣2B.C.D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:,點(diǎn)是上的不同于頂點(diǎn)的動(dòng)點(diǎn),上在點(diǎn)處的切線分別與軸軸交于點(diǎn)、.若存在常數(shù)滿足對(duì)任意的點(diǎn)都有.
(Ⅰ)求實(shí)數(shù),的值;
(Ⅱ)過點(diǎn)作的垂線與交于不同于的一點(diǎn),求面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com