7.若x+y=2,則2x+2y的最小值是(  )
A.$\frac{1}{2}$B.1C.2D.4

分析 利用基本不等式的性質(zhì)、指數(shù)的運算性質(zhì)即可得出.

解答 解:∵x+y=2,
則2x+2y≥2$\sqrt{{2}^{x+y}}$=$2\sqrt{{2}^{2}}$=4,當且僅當x=y=1時取等號.
∴2x+2y的最小值是4.
故選:D.

點評 本題考查了基本不等式的性質(zhì)、指數(shù)的運算性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.下表是某地收集到的新房屋的銷售價格y(單位:萬元)和房屋的面積x(單位:m2)的數(shù)據(jù):
x11511080135105
y44.841.638.449.242
(1)畫出散點圖;    
(2)求線性回歸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=sin({2x+\frac{π}{3}})$,為了得到$g(x)=cos({2x-\frac{π}{2}})$的圖象,只需將f(x)的圖象(  )
A.向左平移$\frac{π}{3}$個長度單位B.向右平移$\frac{π}{3}$個長度單位
C.向左平移$\frac{π}{6}$個長度單位D.向右平移$\frac{π}{6}$個長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.點P(m,1)不在不等式x+y-2<0表示的平面區(qū)域內(nèi),則實數(shù)m的取值范圍是( 。
A.m<1B.m≤1C.m≥1D.m>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.以圓x2+4x+y2=0的圓心為圓心,半徑為3的圓的方程(  )
A.(x-2)2+y2=3B.(x-2)2+y2=9C.(x+2)2+y2=3D.(x+2)2+y2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$,則$\overrightarrow{a}$與$\overrightarrow{a}$+2$\overrightarrow$的夾角為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)的定義域為(-∞,0),其導(dǎo)函數(shù)為f′(x),且滿足2f(x)+f′(x)<0,則不等式f(x+2015)<$\frac{f(-4)}{{e}^{2x+4038}}$的解集為( 。
A.{x|x>-2019}B.{x|x<-2015}C.{x|-2019<x<-2015}D.{x|-2019<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow a=(8,\frac{1}{2}),\overrightarrow b=(x,1)$,其中x>0,若$(\overrightarrow a-2\overrightarrow b)∥(2\overrightarrow a+\overrightarrow b)$,則x=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.給出以下五個結(jié)論:
①經(jīng)過A(x1,y1),B(x2,y2)兩點的直線的方程為$\frac{{y-{y_1}}}{{{y_2}-{y_1}}}=\frac{{x-{x_1}}}{{{x_2}-{x_1}}}$;
②以A(x1,y1),B(x2,y2)為直徑的兩個端點的圓的方程為(x-x1)(x-x2)+(y-y1)(y-y2)=0;
③平面上到兩個定點F1,F(xiàn)2的距離的和為常數(shù)2a的點的軌跡是橢圓;
④平面上到兩個定點F1,F(xiàn)2的距離的差為常數(shù)2a(2a<|F1F2|)的點的軌跡是雙曲線;
⑤平面上到定點F和到定直線l的距離相等的點的軌跡是拋物線.
其中正確結(jié)論有( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

同步練習冊答案