【題目】已知函數(shù)f(x)=( )ax , a為常數(shù),且函數(shù)的圖象過(guò)點(diǎn)(﹣1,2).
(1)求a的值;
(2)若g(x)=4﹣x﹣2,且g(x)=f(x),求滿足條件的x的值.
【答案】
(1)解:由已知得( )﹣a=2,解得a=1
(2)解:由(1)知f(x)=( )x,
又g(x)=f(x),則4﹣x﹣2=( )x,即( )x﹣( )x﹣2=0,即[( )x]2﹣( )x﹣2=0,
令( )x=t,則t2﹣t﹣2=0,即(t﹣2)(t+1)=0,
又t>0,故t=2,即( )x=2,解得x=﹣1,
滿足條件的x的值為﹣1
【解析】(1)代入點(diǎn)的坐標(biāo),即得a的值;(2)根據(jù)條件得到關(guān)于x的方程,解之即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)的相關(guān)知識(shí),掌握0<a<1時(shí):在定義域上是單調(diào)減函數(shù);a>1時(shí):在定義域上是單調(diào)增函數(shù),以及對(duì)函數(shù)的零點(diǎn)的理解,了解函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)當(dāng)時(shí), 取得極值,求的值;
(Ⅱ)當(dāng)函數(shù)有兩個(gè)極值點(diǎn),且時(shí),總有 成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù),α∈[0,π)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=4cosθ.
(Ⅰ)求C2的直角坐標(biāo)方程;
(Ⅱ)若曲線C1與C2交于A,B兩點(diǎn),且|AB|> ,求α的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組欲研究某地區(qū)晝夜溫差大小與患感冒就診人數(shù)之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1到5月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 |
晝夜溫差 | 8 | 10 | 13 | 12 | 9 |
就診人數(shù)(個(gè)) | 18 | 25 | 28 | 26 | 17 |
該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取一組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用選取的一組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是1月的一組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù).求出關(guān)于的線性回歸方程.
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)2,則認(rèn)為得到的線性回歸方程是理想的,試判斷該小組所得的線性回歸方程是否理想?如果不理想,請(qǐng)說(shuō)明理由,如果理想,試預(yù)測(cè)晝夜溫差為時(shí),因感冒而就診的人數(shù)約為多少?
參考公式:, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l過(guò)點(diǎn)P(2, )且傾斜角為α,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=4cos(θ﹣ ),直線l與曲線C相交于A,B兩點(diǎn);
(1)求曲線C的直角坐標(biāo)方程;
(2)若 ,求直線l的傾斜角α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若 =λ +μ ,則λ+μ的最大值為( )
A.3
B.2
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬(wàn)人)的數(shù)據(jù),繪制了下面的折線圖.
根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( 。
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某籃球隊(duì)對(duì)籃球運(yùn)動(dòng)員的籃球技能進(jìn)行統(tǒng)計(jì)研究,針對(duì)籃球運(yùn)動(dòng)員在投籃命中時(shí),運(yùn)動(dòng)員距籃筐中心的水平距離這項(xiàng)指標(biāo),對(duì)某運(yùn)動(dòng)員進(jìn)行了若干場(chǎng)次的統(tǒng)計(jì),依據(jù)統(tǒng)計(jì)結(jié)果繪制如下頻率分布直方圖:
(1)依據(jù)頻率分布直方圖估算該運(yùn)動(dòng)員投籃命中時(shí),他到籃筐中心的水平距離的中位數(shù);
(2)若從該運(yùn)動(dòng)員投籃命中時(shí),他到籃筐中心的水平距離為2到5米的這三組中,用分層抽樣的方法抽取7次成績(jī)(單位:米,運(yùn)動(dòng)員投籃命中時(shí),他到籃筐中心的水平距離越遠(yuǎn)越好),并從抽到的這7次成績(jī)中隨機(jī)抽取2次,并規(guī)定:成績(jī)來(lái)自2到3米這一組時(shí),記1分;成績(jī)來(lái)自3到4米這一組時(shí),記2分;成績(jī)來(lái)4到5米的這一組記 4分,求該運(yùn)動(dòng)員2次總分不少于5分的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com