已知正方體ABCD-A1B1C1D1的棱長為2,P、Q分別是BC、CD上的動點,且|PQ|=
2
,建立如圖所示的坐標系.
(1)確定P、Q的位置,使得B1Q⊥D1P;
(2)當B1Q⊥D1P時,求二面角C1-PQ-A的大。
(1)設BP=t,則
CQ=
2-(2-t)2
,DQ=2-
2-(2-t)2

∴B1(2,0,2),D1(0,2,2),P(2,t,0),Q(2-
2-(2-t)2
,2,0),
QB1
=(
2-(2-t)2
,-2,2),
PD1
=(-2,2-t,2).
∵B1Q⊥D1P等價于
QB1
PD1
=0,
即-2
2-(2-t)2
-2(2-t)+2×2=0,
整理得
2-(2-t)2
=t,解得t=1.
此時,P、Q分別是棱BC、CD的中點,即P、Q分別是棱BC、CD的中點時,
B1Q⊥D1P;

(2)當B1Q⊥D1P時,由(1)知P、Q分別是棱BC、CD的中點.
在正方形ABCD中,PQBD,且AC⊥BD,故AC⊥PQ.
設AC與PQ的交點為E,連接C1E.
∵在正方體ABCD-A1B1C1D1中,CC1⊥底面ABCD,CE是C1E在底面ABCD內的射影,∴C1E⊥PQ,
即∠C1EC是二面角C1-PQ-C的平面角,∠C1EA是二面角C1-PQ-A的平面角.
在正方形ABCD中,CE=
2
2

在Rt△C1EC中,tan∠C1EC=
2
2
2
=2
2
,
∴∠C1EC=arctan2
2

∠C1EA=π-arctan2
2

∴二面角C1-PQ-A的大小是π-arctan2
2

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,點P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,則PB與AC所成的角是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點,PA⊥平面ABC,則四面體P-ABC的四個面中,直角三角形的個數(shù)有( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,AB是圓O的直徑,PA垂直于圓O所在的平面,M是圓周上異于A、B的任意一點,AN⊥PM,點N為垂足,求證:AN⊥平面PBM.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知α∩β=CD,EA⊥α,垂足為A,EB⊥β,垂足為B,求證CD⊥AB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,PB⊥BC,PD⊥CD,且PA=2,點E滿足
PE
=
1
3
PD

(1)求證:PA⊥平面ABCD;
(2)求二面角E-AE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD是菱形,且∠DAB=60°,側面PAD為正三角形,其所在的平面垂直于底面ABCD,求證:AD⊥PB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓周上的一點.
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,邊長為4的正方形ABCD所在平面與正三角形PAD所在平面互相垂直,M,Q分別為PC,AD的中點,
(1)求四棱錐P-ABCD的體積;
(2)求證:PA平面MBD;
(3)試問:在線段AB上是否存在一點N,使得平面PCN⊥平面PQB?若存在,試指出點N的位置,并證明你的結論;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案