【題目】設函數(shù),若對于在定義域內(nèi)存在實數(shù)滿足,則稱函數(shù)為“局部奇函數(shù)”.若函數(shù)是定義在上的“局部奇函數(shù)”,則實數(shù)的取值范圍是(  )

A. [1﹣,1+ B. [﹣1,2] C. [﹣2,2] D. [﹣2,1﹣]

【答案】B

【解析】根據(jù)“局部奇函數(shù)”的定義可知,函數(shù)f(﹣x)=﹣f(x)有解即可,

即f(﹣x)=4﹣x﹣m2﹣x+m2﹣3=﹣(4x﹣m2x+m2﹣3),

∴4x+4﹣x﹣m(2x+2﹣x)+2m2﹣6=0,

即(2x+2﹣x2﹣m(2x+2﹣x)+2m2﹣8=0有解即可.

設t=2x+2﹣x,則t=2x+2﹣x≥2,

∴方程等價為t2﹣mt+2m2﹣8=0在t≥2時有解,

設g(t)=t2﹣mt+2m2﹣8,對稱軸x=,

①若m≥4,則△=m2﹣4(2m2﹣8)≥0,

即7m2≤32,此時m不存在;

②若m<4,要使t2﹣mt+2m2﹣8=0在t≥2時有解,

,解得﹣1≤m<2,綜上:﹣1≤m≤2,故選B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,且橢圓過點,記橢圓的左、右頂點分別為,點是橢圓上異于的點,直線與直線分別交于點.

(1)求橢圓的方程;

(2)過點作橢圓的切線,記,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設二次函數(shù)f(x)滿足:對任意x∈R,都有f(x+1)+f(x)=2x2﹣2x﹣3
(1)求f(x)的解析式;
(2)若關于x的方程f(x)=a有兩個實數(shù)根x1 , x2 , 且滿足:﹣1<x1<2<x2 , 求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,又數(shù)列{ }(n∈N*)是公差為1的等差數(shù)列.
(1)求數(shù)列{an}的通項公式an;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將圓x2+y2=1上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設直線l:2x+y﹣2=0與C的交點為P1 , P2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,設傾斜角為α的直線: (t為參數(shù))與曲線C: (θ為參數(shù))相交于不同的兩點A,B.
(1)若α= ,求線段AB的長度;
(2)若直線的斜率為 ,且有已知點P(2, ),求證:|PA||PB|=|OP|2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式|x﹣3|+|x﹣4|<2a.
(1)若a=1,求不等式的解集;
(2)若已知不等式有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù) 是偶函數(shù),若h(2x﹣1)≤h(b),則x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為(0,+∞)的函數(shù)f(x)滿足:
①x>1時,f(x)<0;
②f( )=1;
③對任意的正實數(shù)x,y,都有f(xy)=f(x)+f(y).
(1)求證:f( )=﹣f(x);
(2)求證:f(x)在定義域內(nèi)為減函數(shù);
(3)求滿足不等式f(log0.5m+3)+f(2log0.5m﹣1)≥﹣2的m集合.

查看答案和解析>>

同步練習冊答案