13.命題“?x0∈R,x03-x02+1>0”的否定是(  )
A.?x0∈R,x03-x02+1<0B.?x∈R,x3-x2+1≤0
C.?x0∈R,x03-x02+1≤0D.?x∈R,x3-x2+1>0

分析 根據(jù)特稱命題的否定是全稱命題進(jìn)行判斷即可.

解答 解:命題是特稱命題,則命題的否定是全稱命題,
即?x∈R,x3-x2+1≤0,
故選:B

點(diǎn)評 本題主要考查含有量詞的命題的否定,根據(jù)特稱命題的否定是全稱命題是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}是公比不等于1的等比數(shù)列,前n項(xiàng)和為Sn,a11=512,且S8、S7、S9成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn=n|an|,數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知三個(gè)數(shù)a=0.32,b=log20.3,c=20.3,則a,b,c之間的大小關(guān)系是( 。
A.b<a<cB.a<b<cC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知直線x=1上的點(diǎn)P到直線x-y=0的距離為$\sqrt{2}$,則點(diǎn)P的坐標(biāo)為(  )
A.(1,-1)B.(1,3)C.(1,-2)或(1,2)D.(1,-1)或(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(m,1),且$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{4}$.
(1)求|$\overrightarrow{a}$-2$\overrightarrow$|;
(2)若($\overrightarrow{a}$+λ$\overrightarrow$)與$\overrightarrow$垂直,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,正方形ABCD與梯形AMPD所在的平面互相垂直,AD⊥PD,MA∥PD,MA=AD=$\frac{1}{2}$PD=1.
(1)求證:MB∥平面PDC;
(2)求二面角M-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.A是拋物線y2=2px(p>0)上的一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)|AF|=4時(shí),∠OFA=120°,則拋物線的準(zhǔn)線方程是(  )
A.x=-1B.y=-1C.x=-2D.y=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)a,b∈R,則“a+b≥4”是“a≥2且b≥2”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.要得到y(tǒng)=sin$\frac{x}{2}$的圖象,只需將y=cos($\frac{x}{2}$-$\frac{π}{4}$)的圖象上的所有點(diǎn)( 。
A.向右平移$\frac{π}{2}$B.向左平移$\frac{π}{2}$C.向左平移$\frac{π}{4}$D.向右平移$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊答案