分析 令t=($\frac{1}{3}$)x,則y=f(x)=1+at+t2,
(1)當(dāng)a=-2,x∈[1,2]時(shí),y=f(x)=1-2t+t2,t∈[$\frac{1}{9}$,$\frac{1}{3}$],結(jié)合二次函數(shù)的圖象和性質(zhì),可得函數(shù)f(x)的最大值與最小值;
(2)若函數(shù)f(x)在[1,+∞)上都有-2≤f(x)≤3,y=1+at+t2,在(0,$\frac{1}{3}$]上都有-2≤y≤3,結(jié)合二次函數(shù)的圖象和性質(zhì),可得實(shí)數(shù)a的取值范圍.
解答 解:令t=($\frac{1}{3}$)x,則y=f(x)=1+at+t2,
(1)當(dāng)a=-2,x∈[1,2]時(shí),y=f(x)=1-2t+t2,t∈[$\frac{1}{9}$,$\frac{1}{3}$],
當(dāng)t=$\frac{1}{9}$,即x=2時(shí),函數(shù)f(x)的最大值為$\frac{64}{81}$,
當(dāng)t=$\frac{1}{3}$,即x=1時(shí),函數(shù)f(x)的最小值為$\frac{4}{9}$,
(2)若函數(shù)f(x)在[1,+∞)上都有-2≤f(x)≤3,
則y=1+at+t2,在(0,$\frac{1}{3}$]上都有-2≤y≤3,
由函數(shù)y=1+at+t2的圖象是開口朝上,且以直線t=$-\frac{a}{2}$為對(duì)稱軸的直線,
故當(dāng)$-\frac{a}{2}$≤0,即a≥0時(shí),1+$\frac{1}{3}$a+$\frac{1}{9}$≤3,解得:a∈[0,$\frac{17}{3}$]
當(dāng)0<$-\frac{a}{2}$<$\frac{1}{3}$,即$-\frac{2}{3}$<a<0時(shí),$\left\{\begin{array}{l}\frac{4-{a}^{2}}{4}≥-2\\ 1+\frac{1}{3}a+\frac{1}{9}≤3\end{array}\right.$,解得:a∈($-\frac{2}{3}$,0),
當(dāng)$-\frac{a}{2}$≥$\frac{1}{3}$,即a≤$-\frac{2}{3}$時(shí),1+$\frac{1}{3}$a+$\frac{1}{9}$≥-2,解得:a∈[-$\frac{28}{3}$,$-\frac{2}{3}$]
綜相可得a∈[-$\frac{28}{3}$,$\frac{17}{3}$].
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的最值,恒成立問題,二次函數(shù)的圖象和性質(zhì),分類討論思想,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-3,-1) | B. | [-3,2) | C. | (-∞,-3]∪(2,+∞) | D. | (-∞,-3]∪(-1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{b^4}$ | B. | $\frac{1}{b^5}$ | C. | b4 | D. | b5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,-2) | B. | (1,0) | C. | (1,-2) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P=Q | B. | P?Q | C. | P?Q | D. | P?Q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com