已知tanα=1,求
sinα-cosαsinα+cosα
的值.
分析:原式分子分母除以cosα,利用同角三角函數(shù)間的基本關(guān)系化簡,將tanα的值代入計算即可求出值.
解答:解:∵tanα=1,
∴原式=
tanα-1
tanα+1
=
1-1
1+1
=0.
點評:此題考查了同角三角函數(shù)間的基本關(guān)系,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知tanα=2,求:(1)tan(α+
π
4
)
的值;   (2)
6sinα+cosα
3sinα-2cosα
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

①已知tanα=1,α∈(0,
π
2
)
,求
2cos2
α
2
-sinα-1
2
sin(
π
4
+α)
的值;
②已知θ∈(0,
π
2
)
,且sin(
π
4
+θ)
=
3
2
,求sin(
π
4
+2θ)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)計算81
1
2
-(
1
8
)-1+30
+lg100+lg
1
10

(2)已知tanα=2,求
3sin(5π-α)+5sin(
2
-α)
5sin(8π-α)+cos(-α)
的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列各式的值:
(1)lg24-(lg3+lg4)+lg5;
(2)已知tanα=2,求
sin(α+3π)+cos(π+α)sin(-α)-cos(π+α)
的值.

查看答案和解析>>

同步練習冊答案