14.已知cos(x-$\frac{π}{3}$)=$\frac{1}{3}$,則cos(2x-$\frac{5π}{3}$)+sin2($\frac{π}{3}$-x)的值為( 。
A.-$\frac{1}{9}$B.$\frac{1}{9}$C.$\frac{5}{3}$D.-$\frac{5}{3}$

分析 根據(jù)cos(x-$\frac{π}{3}$)=$\frac{1}{3}$,求出cos(2x-$\frac{5π}{3}$)和sin2($\frac{π}{3}$-x)的值,再求和.

解答 解:cos(x-$\frac{π}{3}$)=$\frac{1}{3}$,
∴cos(2x-$\frac{5π}{3}$)=cos[(2x-$\frac{2π}{3}$)-π]
=cos[π-2(x-$\frac{π}{3}$)]
=-cos2(x-$\frac{π}{3}$)
=1-2cos2(x-$\frac{π}{3}$)
=1-2×${(\frac{1}{3})}^{2}$
=$\frac{7}{9}$,
sin2($\frac{π}{3}$-x)=1-cos2($\frac{π}{3}$-x)
=1-cos2(x-$\frac{π}{3}$)
=1-${(\frac{1}{3})}^{2}$
=$\frac{8}{9}$,
∴cos(2x-$\frac{5π}{3}$)+sin2($\frac{π}{3}$-x)=$\frac{7}{9}$+$\frac{8}{9}$=$\frac{5}{3}$.
故選:C.

點(diǎn)評(píng) 本題主要考查了二倍角公式與同角的三角函數(shù)關(guān)系應(yīng)用問題,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某化肥廠用三種原料生產(chǎn)甲乙兩種肥料,生產(chǎn)1噸甲種肥料和生產(chǎn)1噸乙種肥料所需三種原料的噸數(shù)如右表所示:已知生產(chǎn)1噸甲種肥料產(chǎn)生的利潤(rùn)2萬元,生產(chǎn)1噸乙種肥料產(chǎn)生的利潤(rùn)為3萬元,現(xiàn)有A種原料20噸,B種原料36噸,C種原料32噸,在此基礎(chǔ)上安排生產(chǎn),則生產(chǎn)甲乙兩種肥料的利潤(rùn)之和的最大值為( 。
ABC
242
448
A.17萬元B.18萬元C.19萬元D.20萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.f(x)=|x-2017|+|x-2016|+…+|x-1|+|x+1|+…+|x+2016|+|x+2017|,在不等式e2017x≥ax+1(x∈R)恒成立的條件下等式f(2018-a)=f(2017-b)恒成立,求b的取值集合( 。
A.{b|2016≤b≤2018}B.{2016,2018}C.{2018}D.{2017}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=($\frac{1}{2}$)x,g(x)=|log3(x-1)|,則方程f(x)-g(x)=0的實(shí)根個(gè)數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.據(jù)統(tǒng)計(jì),目前微信用戶已達(dá)10億,2016年,諸多傳統(tǒng)企業(yè)大佬紛紛嘗試進(jìn)入微商渠道,讓這個(gè)行業(yè)不斷地走向正規(guī)化、規(guī)范化.2017年3月25日,第五屆中國(guó)微商博覽會(huì)在山東濟(jì)南舜耕國(guó)際會(huì)展中心召開,力爭(zhēng)為中國(guó)微商產(chǎn)業(yè)轉(zhuǎn)型升級(jí).某品牌飲料公司對(duì)微商銷售情況進(jìn)行中期調(diào)研,從某地區(qū)隨機(jī)抽取6家微商一周的銷售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).
(Ⅰ)若銷售金額(單位:萬元)不低于平均值$\overline x$的微商定義為優(yōu)秀微商,其余為非優(yōu)秀微商,根據(jù)莖葉圖推斷該地區(qū)110家微商中有幾家優(yōu)秀?
(Ⅱ)從隨機(jī)抽取的6家微商中再任取2家舉行消費(fèi)者回訪調(diào)查活動(dòng),求恰有1家是優(yōu)秀微商的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=sin({\frac{π}{2}-x})sinx-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{2}$
(1)求f(x)的最大值及取得最大值時(shí)x值;
(2)若方程$f(x)=\frac{2}{3}$在(0,π)上的解為x1,x2,求cos(x1-x2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知奇函數(shù)f(x)=$\left\{\begin{array}{l}{3^x}-a,({x≥0})\\ g(x),({x<0})\end{array}$,則f(-2)的值為-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知點(diǎn)P(x,y)滿足$|x|-1≤y≤\sqrt{1-{{|x|}^2}},O$為坐標(biāo)原點(diǎn),則使$|{PO}|≥\frac{{\sqrt{2}}}{2}$的概率為( 。
A.$\frac{π}{π+2}$B.$\frac{π}{π+4}$C.$\frac{2}{π+1}$D.$\frac{2}{π+2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.將函數(shù)y=f(x)的圖象向左平移φ(0<φ<π)個(gè)單位后得到函數(shù)g(x)=sin2x的圖象,當(dāng)x1,x2滿足時(shí),|f(x1)-g(x2)|=2,${|{{x_1}-{x_2}}|_{min}}=\frac{π}{3}$,則φ的值為( 。
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案