正方體中,MN分別是棱CD1CC1的中點(diǎn),則異面直線MA1DN所成角的余弦值是            .
0

試題分析:以D為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,利用向量的方法求出夾角求出異面直線A1M與DN所成的角.解:以D為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.設(shè)棱長(zhǎng)為2,
則D(0,0,0),N(0,2,1),M(0,1,0),A1(2,0,2),=(0,2,1),=(﹣2,1,﹣2),=0,所以,即A1M⊥DN,異面直線A1M與DN所成的角的大小是90°,故答案為:0
點(diǎn)評(píng):本題考查空間異面直線的夾角求解,采用了向量的方法.向量的方法能降低空間想象難度,但要注意有關(guān)點(diǎn),向量坐標(biāo)的準(zhǔn)確.否則容易由于計(jì)算失誤而出錯(cuò)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

長(zhǎng)方體中,,的中點(diǎn),則異面直線所成角的余弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,,
求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知四棱錐中,側(cè)棱都相等,底面是邊長(zhǎng)為的正方形,底面中心為,以為直徑的球經(jīng)過(guò)側(cè)棱中點(diǎn),則該球的體積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,平面,,分別為的中點(diǎn).

(I)證明:平面;
(II)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐中,側(cè)面與側(cè)面均為等邊三角形, 中點(diǎn).

(Ⅰ)證明:平面;
(Ⅱ)求異面直線BS與AC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,四邊形ABCD是正方形,PD⊥平面ABCDPD=AB=2, E,F,G分別是PC,PD,BC的中點(diǎn).

(1)求三棱錐E-CGF的體積;
(2)求證:平面PAB//平面EFG;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形PCBM是直角梯形,,.又,,直線AM與直線PC所成的角為

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形均為菱形,,且.

(1)求證:
(2)求證:;
(3)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案