如圖,平面,,分別為的中點.

(I)證明:平面
(II)求與平面所成角的正弦值.
(I)只需證;(II)

試題分析:(I)證明:連接,  在中,分別是的中點,所以, 又,所以,又平面ACD ,DC平面ACD, 所以平面ACD。
(Ⅱ)在中,,所以
而DC平面ABC,,所以平面ABC
平面ABE, 所以平面ABE平面ABC, 所以平面ABE
由(Ⅰ)知四邊形DCQP是平行四邊形,所以
所以平面ABE, 所以直線AD在平面ABE內(nèi)的射影是AP,
所以直線AD與平面ABE所成角是
中, ,
所以。
點評:本題主要考查了空間中直線與平面所成的角,屬立體幾何中的常考題型,較難.本題也可以用向量法來做。而對于利用向量法求線面角關鍵是正確寫出點的坐標和求解平面的一個法向量。注意計算要仔細、認真。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,在棱長為1的正方體的面對角線上存在一點使得最短,則的最小值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知在正方體分別是的中點,在棱上,且

(1)求證:; (2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在中,,延長,連接,若,且,則________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱錐P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD平面PAB

(1)求證:AB平面PCB;
(2)求異面直線AP與BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知長方體中, ,,則二面角的余弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

正方體中,MN分別是棱CD1、CC1的中點,則異面直線MA1DN所成角的余弦值是            .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,棱柱ABCD—的底面為菱 形 ,AC∩BD=O側(cè)棱BD,F的中點.

(Ⅰ)證明:平面
(Ⅱ)證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,將邊長為2的正方形ABCD沿對角線BD折疊,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=,

(1) 求證:DE⊥AC
(2)求DE與平面BEC所成角的正弦值
(3)直線BE上是否存在一點M,使得CM//平面ADE,若存在,求M的位置,不存在,請說明理由。

查看答案和解析>>

同步練習冊答案