已知函數(shù)f(x)=cos2(x+
π
12
),g(x)=1+
1
2
sin2x.
(1)設(shè)x=x0是函數(shù)y=f(x)圖象的一條對稱軸,求g(x0)的值;
(2)令h(x)=f(x)+g(x),求函數(shù)h(x)的最小正周期和單調(diào)遞增區(qū)間;
(3)若關(guān)于x的不等式f(x)+a-
1
2
>0在[0,
π
2
]上有解,求實(shí)數(shù)a的取值范圍.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的最值
專題:綜合題,三角函數(shù)的圖像與性質(zhì)
分析:(1)先對函數(shù)f(x)根據(jù)二倍角公式進(jìn)行化簡,再由x=x0是函數(shù)y=f(x)圖象的一條對稱軸求出x0的值后代入到函數(shù)g(x)中,對k分奇偶數(shù)進(jìn)行討論求值.
(2)將函數(shù)f(x)、g(x)的解析式代入到h(x)中化簡整理成y=Asin(wx+ρ)+b的形式,得到h(x)=
1
2
,然后令2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
求出x的范圍即可.
解答: 解:(1)由題設(shè)知f(x)=
1
2
[1+cos(2x+
π
6
)].
因?yàn)閤=x0是函數(shù)y=f(x)圖象的一條對稱軸,所以2x0+
π
6
=kπ,
即2x0=kπ-
π
6
(k∈Z).
所以g(x0)=1+
1
2
sin2x0=1+
1
2
sin(kπ-
π
6
).
當(dāng)k為偶數(shù)時(shí),g(x0)=1+
1
2
sin(-
π
6
)=1-
1
4
=
3
4
,
當(dāng)k為奇數(shù)時(shí),g(x0)=1+
1
2
sin(
π
6
)=1+
1
4
=
5
4

(2)h(x)=f(x)+g(x)=
1
2
[1+cos(2x+
π
6
)]+1+
1
2
sin2x
=
1
2
[cos(2x+
π
6
)+sin2x]+
3
2
=
1
2
3
2
cos2x+
1
2
sin2x)+
3
2

=
1
2
sin(2x+
π
3
)+
3
2
,
所以函數(shù)h(x)的最小正周期T=π.
當(dāng)2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,即kπ-
12
≤x≤kπ+
π
12
(k∈Z)時(shí),
函數(shù)h(x)=
1
2
sin(2x+
π
3
)+
3
2
是增函數(shù),
故函數(shù)h(x)的單調(diào)遞增區(qū)間是[kπ-
12
,kπ+
π
12
](k∈Z).
(3)f(x)+a-
1
2
>0,即有
1
2
cos(2x+
π
6
)>-a在[0,
π
2
]上有解,
令f=
1
2
cos(2x+
π
6
),有fmax=
1
2
,fmin=-
1
2

所以-
1
2
<f<
1
2
,
要使-a<f(x)有解,則a>-
1
2
,
所以a的取值范圍是a>-
1
2
點(diǎn)評:本題主要考查三角函數(shù)的基本性質(zhì)--單調(diào)性、對稱性,考查二倍角公式的運(yùn)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(x+2)=f(x).當(dāng)x∈[0,1]時(shí),f(x)=2x,若方程ax+a-f(x)=0(a>0)恰有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(  )
A、(
1
2
,1)
B、[0,2]
C、(1,2)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=cosβ,cosα=sin2β,則sin2β+cos2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosx+sinx+cosx,且在△ABC中,sinA,sinB,sinC依次成等比數(shù)列,則f(B)范圍為(  )
A、1≤f(B)≤
2
B、1<f(B)≤
2
+
1
2
C、
2
6
+2
2
+
3
-2
8
≤f(B)<1
D、
2
6
+2
2
+
3
-2
8
≤f(B)<
2
+
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A=[0,4],B=[0,2],則下列對應(yīng)中是A到B的映射的為( 。
A、f:x→
1
2
x
B、f:x→
2
3
x
C、f:x→
3
4
x
D、f:x→
4
5
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙M:(x+1)2+(y-2)2=4.
(1)求過點(diǎn)A(1,1)且與圓相切的切線方程.
(2)求過點(diǎn)B(13,4)且與圓相切的切線方程.
(3)求過點(diǎn)C(
3
-1,3)且與圓相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯(cuò)誤的是(  )
A、若命題p:對于任意的x∈(1,+∞),都有x2>1,則命題p的否定是:存在x∈(1,+∞),使x2≤1
B、“sinθ=
1
2
”是“θ=30°”的必要不充分條件
C、命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”
D、已知p:存在x∈R,使cosx=1,q:任意x∈R,都有x2-x+1>0,則“p且q”為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
m
+
y2
4
=1的一個(gè)焦點(diǎn)為(0,1)則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡2
log2
5+lg5lg2+lg22-lg2的結(jié)果為
 

查看答案和解析>>

同步練習(xí)冊答案