【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中t為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)寫出直線l普通方程和曲線C的直角坐標(biāo)方程;
(2)過點(diǎn)且與直線平行的直線交于, 兩點(diǎn),求.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部門在上班高峰時(shí)段對甲、乙兩座地鐵站各隨機(jī)抽取了50名乘客,統(tǒng)計(jì)其乘車等待時(shí)間(指乘客從進(jìn)站口到乘上車的時(shí)間,單位:分鐘)將統(tǒng)計(jì)數(shù)據(jù)按,,,…,分組,制成頻率分布直方圖如圖所示:
(1)求a的值;
(2)記A表示事件“在上班高峰時(shí)段某乘客在甲站乘車等待時(shí)間少于20分鐘”試估計(jì)A的概率;
(3)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間左端點(diǎn)值來估計(jì),記在上班高峰時(shí)段甲、乙兩站各抽取的50名乘客乘車的平均等待時(shí)間分別為,求的值,并直接寫出與的大小關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y=﹣x2+2|x|+1的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.
(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對應(yīng)值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | ﹣2 |
| m | 2 | 1 | 2 | 1 | ﹣2 | … |
其中,m= .
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①方程﹣x2+2|x|+1=0有 個(gè)實(shí)數(shù)根;
②關(guān)于x的方程﹣x2+2|x|+1=a有4個(gè)實(shí)數(shù)根時(shí),a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a為常數(shù)).
(1)求不等式的解集;
(2)當(dāng)a>0時(shí),若對于任意的 [3,4],恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)興趣小組對函數(shù)的圖象和性質(zhì)將進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.
(1)自變量的取值范圍是除外的全體實(shí)數(shù),與的幾組對應(yīng)值列表如下:
其中,_________;
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn)并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分;
(3)觀察函數(shù)圖象,寫出一條函數(shù)性質(zhì);
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與軸交點(diǎn)情況是________,所以對應(yīng)方程的實(shí)數(shù)根的情況是________;
②方程有_______個(gè)實(shí)數(shù)根;
③關(guān)于的方程有個(gè)實(shí)數(shù)根,的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量=(sinx,cosx),=(sin(x﹣),sinx),函數(shù)f(x)=2,g(x)=f().
(1)求f(x)在[,π]上的最值,并求出相應(yīng)的x的值;
(2)計(jì)算g(1)+g(2)+g(3)+…+g(2014)的值;
(3)已知t∈R,討論g(x)在[t,t+2]上零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線與拋物線交于,兩點(diǎn),與橢圓交于,兩點(diǎn),直線,,,(為坐標(biāo)原點(diǎn))的斜率分別為,,,,若.
(1)是否存在實(shí)數(shù),滿足,并說明理由;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A過定點(diǎn),且在軸上截得的弦長為,記動(dòng)圓圓心的軌跡為曲線.
(1)求直線與曲線圍成的區(qū)域面積;
(2)點(diǎn)在直線上,點(diǎn),過點(diǎn)作曲線的切線、,切點(diǎn)分別為、,證明:存在常數(shù),使得,并求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com