設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若a1=
4
3
an+1=3Sn
,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an+1,求數(shù)列{bn}的前n項(xiàng)和為T(mén)n;
(3)令cn=
1
Tn
,數(shù)列{cn}的前n項(xiàng)和為Un,試求最小的集合[a,b),使Un∈[a,b).
分析:(1)由an+1=3Sn①,得an=Sn-1(n≥2)②,兩式相減可得遞推式,由遞推式可判斷數(shù)列{an}從第二項(xiàng)起構(gòu)成等比數(shù)列,從而可求得an;
(2)由(1)得bn,根據(jù)由bn可判斷數(shù)列{bn}為等差數(shù)列,利用求和公式可求Tn
(3)由(2)可求得cn,利用裂項(xiàng)相消法可求得Un,根據(jù)Un的單調(diào)性可求得Un的范圍,由其范圍可得最小的[a,b);
解答:解:(1)由an+1=3Sn①,得an=Sn-1(n≥2)②,
①-②得,an+1-an=3an,即an+1=4an(n≥2),
又a2=3S1=3×
4
3
=4,4a1=
16
3
,
∴數(shù)列{an}從第二項(xiàng)起構(gòu)成等比數(shù)列,公比為4,
an=a24n-2=4•4n-2=4n-1(n≥2),
an=
4
3
,n=1
4n-1,n≥2
;
(2)由(1)得,bn=log2an+1=log24n+1-1=2n,
∴Tn=2+4+6+…+2n=
n(2+2n)
2
=n(n+1);
(3)由(2)知,cn=
1
Tn
=
1
n(n+1)
=
1
n
-
1
n+1
,
∴Un=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
,
易知1-
1
n+1
單調(diào)遞增,
∴1-
1
2
≤1-
1
n+1
<1,即
1
2
Un<1,
∴最小的集合[a,b)=[
1
2
,1),使Un∈[a,b).
點(diǎn)評(píng):本題考查利用數(shù)列遞推式求數(shù)列通項(xiàng)、對(duì)數(shù)列求和,裂相消法對(duì)數(shù)列求和是高考考查的重點(diǎn)內(nèi)容,應(yīng)熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列an的前n項(xiàng)的和為Sn,a1=
3
2
,Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項(xiàng)公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域?yàn)镈n,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為an(n∈N*
(1)寫(xiě)出an+1與an的關(guān)系(只需給出結(jié)果,不需要過(guò)程),
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列an的前n項(xiàng)和為SnTn=
Sn
5•2n
,若對(duì)一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案